Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 14(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254678

RESUMO

Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.


Assuntos
Diabetes Mellitus Tipo 2 , Tretinoína , Humanos , Tretinoína/farmacologia , Lactoferrina/farmacologia , Homeostase , Antibacterianos , Íons , Ferro
2.
Pharmaceutics ; 16(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399348

RESUMO

The short precorneal residence time of ophthalmic drops is associated with their low absorption; therefore, the development of ocular inserts capable of prolonging and controlling the ophthalmic release of drugs is an interesting option in the design and development of these drugs. A surface response design was developed, specifically the Central Composite Design (CCD), to produce ophthalmic films loaded with Dexamethasone (DEX) by the solvent evaporation method having experimental levels of different concentrations of previously selected polymers (PVP K-30 and Eudragit RS100.). Once optimization of the formulation was obtained, the in vivo test was continued. The optimal formulation obtained a thickness of 0.265 ± 0.095 mm, pH of 7.11 ± 0.04, tensile strength of 15.50 ± 3.94 gF, humidity (%) of 22.54 ± 1.7, mucoadhesion strength of 16.89 ± 3.46 gF, chemical content (%) of 98.19 ± 1.124, release of (%) 13,510.71, and swelling of 0.0403 ± 0.023 g; furthermore, in the in vivo testing the number and residence time of PMN cells were lower compared to the Ophthalmic Drops. The present study confirms the potential use of polymeric systems using PVPK30 and ERS100 as a new strategy of controlled release of ophthalmic drugs by controlling and prolonging the release of DEX at the affected site by decreasing the systemic effects of the drug.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa