Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 305(10): R1141-52, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24049115

RESUMO

The sensory circumventricular organs (CVOs) are specialized collections of neurons and glia that lie in the midline of the third and fourth ventricles of the brain, lack a blood-brain barrier, and function as chemosensors, sampling both the cerebrospinal fluid and plasma. These structures, which include the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), are sensitive to changes in sodium concentration but the cellular mechanisms involved remain unknown. Epithelial sodium channel (ENaC)-expressing neurons of the CVOs may be involved in this process. Here we demonstrate with immunohistochemical and in situ hybridization methods that ENaC-expressing neurons are densely concentrated in the sensory CVOs. These neurons become c-Fos activated, a marker for neuronal activity, after various manipulations of peripheral levels of sodium including systemic injections with hypertonic saline, dietary sodium deprivation, and sodium repletion after prolonged sodium deprivation. The increases seen c-Fos activity in the CVOs were correlated with parallel increases in plasma sodium levels. Since ENaCs play a central role in sodium reabsorption in kidney and other epithelia, we present a hypothesis here suggesting that these channels may also serve a related function in the CVOs. ENaCs could be a significant factor in modulating CVO neuronal activity by controlling the magnitude of sodium permeability in neurons. Hence, some of the same circulating hormones controlling ENaC expression in kidney, such as angiotensin II and atrial natriuretic peptide, may coordinate ENaC expression in sensory CVO neurons and could potentially orchestrate sodium appetite, osmoregulation, and vasomotor sympathetic drive.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sódio/farmacologia , Órgão Subfornical/citologia , Animais , Área Postrema/citologia , Canais Epiteliais de Sódio/genética , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Ratos
2.
Biochem Biophys Res Commun ; 381(2): 204-9, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19338774

RESUMO

Slo3 channels belong to the high conductance Slo K+ channel family. They are activated by voltage and intracellular alkalinization, and have a K+/Na+ permeability ratio (PK/PNa) of only approximately 5. Slo3 channels have only been found in mammalian sperm. Here we show that Slo3 channels expressed in Xenopus oocytes are also stimulated by elevated cAMP levels through PKA dependent phosphorylation. Capacitation, a maturational process required by mammalian sperm to enable them to fertilize eggs, involves intracellular alkalinization and an increase in cAMP. Our mouse sperm patch clamp recordings have revealed a K+ current that is time and voltage dependent, is activated by intracellular alkalinization, has a PK/PNa > or = 5, is weakly blocked by TEA and is very sensitive to Ba2+. This current is also stimulated by cAMP. All of these properties match those displayed by heterologously expressed Slo3 channels, suggesting that the native current we observe in sperm is indeed carried by Slo3 channels.


Assuntos
AMP Cíclico/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Espermatozoides/metabolismo , Animais , AMP Cíclico/farmacologia , Concentração de Íons de Hidrogênio , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Técnicas de Patch-Clamp , Espermatozoides/efeitos dos fármacos
3.
Brain Res ; 1601: 40-51, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25557402

RESUMO

Epithelial sodium channels (ENaCs) are strongly expressed in the circumventricular organs (CVOs), and these structures may play an important role in sensing plasma sodium levels. Here, the potent ENaC blocker amiloride was injected intraperitoneally in rats and 2h later, the c-Fos activation pattern in the CVOs was studied. Amiloride elicited dose-related activation in the area postrema (AP) but only ~10% of the rats showed c-Fos activity in the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO). Tyrosine hydroxylase-immunoreactive (catecholamine) AP neurons were activated, but tryptophan hydroxylase-immunoreactive (serotonin) neurons were unaffected. The AP projects to FoxP2-expressing neurons in the dorsolateral pons which include the pre-locus coeruleus nucleus and external lateral part of the parabrachial nucleus; both cell groups were c-Fos activated following systemic injections of amiloride. In contrast, another AP projection target--the aldosterone-sensitive neurons of the nucleus tractus solitarius which express the enzyme 11-ß-hydroxysteriod dehydrogenase type 2 (HSD2) were not activated. As shown here, plasma concentrations of amiloride used in these experiments were near or below the IC50 level for ENaCs. Amiloride did not induce changes in blood pressure, heart rate, or regional vascular resistance, so sensory feedback from the cardiovascular system was probably not a causal factor for the c-Fos activity seen in the CVOs. In summary, amiloride may have a dual effect on sodium homeostasis causing a loss of sodium via the kidney and inhibiting sodium appetite by activating the central satiety pathway arising from the AP.


Assuntos
Amilorida/farmacologia , Área Postrema/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Amilorida/sangue , Amilorida/líquido cefalorraquidiano , Animais , Área Postrema/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa