Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biomacromolecules ; 24(5): 2149-2163, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37039769

RESUMO

Despite current progress in the development of targeted therapies for cancer treatment, there is a lack in convenient therapeutics for colorectal cancer (CRC). Lactoferrin nanoparticles (Lf NPs) are a promising drug delivery system in cancer therapy. However, numerous obstacles impede their oral delivery, including instability against stomach enzymes and premature uptake during passage through the small intestine. Microencapsulation of Lf NPs offer a great solution for these obstacles. It can protect Lf NPs and their drug payloads from degradation in the upper gastrointestinal tract (GIT), reduce burst drug release, and improve the release profile of the encapsulated NPs triggered by stimuli in the colon. Here, we developed nanoparticle-in-microparticle delivery systems (NIMDs) for the oral delivery of docetaxel (DTX) and atorvastatin (ATR). The NPs were obtained by dual conjugation of DTX and ATR into the Lf backbone, which was further microencapsulated into calcium-crosslinked microparticles using polysaccharide-protein hybrid copolymers. The NIMDs showed no detectable drug release in the upper GIT compared to NPs. Furthermore, sustained release of the NPs from the NIMDs in rat cecal content was observed. Moreover, the in vivo study demonstrated the superiority of the NIMDs over NPs in CRC treatment by suppressing p-AKT, p-ERK1/2, and NF-κB. This study provides the proof of concept for using NIMDs to enhance the effect of protein NPs in CRC treatment.


Assuntos
Antineoplásicos , Neoplasias do Colo , Nanopartículas , Ratos , Animais , Nanoconjugados , Lactoferrina , Docetaxel , Sistemas de Liberação de Medicamentos , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos , Antineoplásicos/farmacologia
2.
AAPS PharmSciTech ; 23(3): 76, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35178657

RESUMO

The preparation of drugs into nanocrystals represents a practical pharmaceutical technology to solubilize poorly water-soluble drugs and enhance bioavailability. However, commonly used stabilizers in nanocrystals like polymers and surfactants are frequently inefficient and cannot stabilize nanocrystals for an expected time. This study reports an exquisite platform for nanocrystal production based on a metal-phenolic network (MPN). MPN-wrapped nanocrystal particles (MPN-NPs) were fabricated through an anti-solvent precipitation method using tannic acid and FeIII or AlIII as coupling agents and characterized by dynamic light scattering, transmission electron microscope, ultraviolet and visible spectrophotometry, fourier-transform infrared spectroscopy, and X-ray powder diffraction. In vitro release, cytotoxicity, and stability were mainly studied with MPN-NPs loading paclitaxel. The suitability of MPN as a nanocrystal stabilizer was also investigated for other classical hydrophobic drugs, including simvastatin, andrographolide, atorvastatin calcium, ferulic acid, and famotidine. The results showed that MPN could effectively wrap and stabilize various drug nanocrystals apart from famotidine. The maximum solubilization of MPN towards atorvastatin calcium was up to 1587 folds, and it also exhibited an excellent solubilizing effect on other hydrophobic drugs. We disclosed that the drug was entrapped in MPN in the nanocrystal form, and there were distinct physiochemical interactions between MPN and the payload. Our findings suggested that MPN may be a promising platform for nanocrystal production to address the challenge of low solubility associated with hydrophobic drugs. Graphical abstract.


Assuntos
Compostos Férricos , Nanopartículas , Excipientes , Nanopartículas/química , Tamanho da Partícula , Solubilidade
3.
ACS Omega ; 8(6): 5655-5671, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816638

RESUMO

AIM: Despite extensive progress in the field of cancer nanotheranostics, clinical development of biocompatible theranostic nanomedicine remains a formidable challenge. Herein, we engineered biocompatible silk-sericin-tagged inorganic nanohybrids for efficient treatment and imaging of cancer cells. The developed nanocarriers are anticipated to overcome the premature release of the chemotherapeutic drug pemetrexed (PMX), enhance the colloidal stability of layered double hydroxides (LDHs), and maintain the luminescence properties of ZnO quantum dots (QDs). Materials and Methods: PMX-intercalated LDHs were modified with sericin and coupled to ZnO QDs for therapy and imaging of breast cancer cells. Results: The optimized nanomedicine demonstrated a sustained release profile of PMX, and high cytotoxicity against MDA-MB-231 cells compared to free PMX. In addition, high cellular uptake of the engineered nanocarriers into MDA-MB-231 breast cancer cells was accomplished. Conclusions: Conclusively, the LDH-sericin nanohybrids loaded with PMX and conjugated to ZnO QDs offered a promising cancer theranostic nanomedicine.

4.
Acta Pharm Sin B ; 12(2): 600-620, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34401226

RESUMO

The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.

5.
Front Chem ; 10: 847573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392419

RESUMO

While the treatment regimen of certain types of breast cancer involves a combination of hormonal therapy and chemotherapy, the outcomes are limited due to the difference in the pharmacokinetics of both treatment agents that hinders their simultaneous and selective delivery to the cancer cells. Herein, we report a hybrid carrier system for the simultaneous targeted delivery of aromatase inhibitor exemestane (EXE) and methotrexate (MTX). EXE was physically loaded within liquid crystalline nanoparticles (LCNPs), while MTX was chemically conjugated to lactoferrin (Lf) by carbodiimide reaction. The anionic EXE-loaded LCNPs were then coated by the cationic MTX-Lf conjugate via electrostatic interactions. The Lf-targeted dual drug-loaded LCNPs exhibited a particle size of 143.6 ± 3.24 nm with a polydispersity index of 0.180. It showed excellent drug loading with an EXE encapsulation efficiency of 95% and an MTX conjugation efficiency of 33.33%. EXE and MTX showed synergistic effect against the MCF-7 breast cancer cell line with a combination index (CI) of 0.342. Furthermore, the Lf-targeted dual drug-loaded LCNPs demonstrated superior synergistic cytotoxic activity with a combination index (CI) of 0.242 and a dose reduction index (DRI) of 34.14 and 4.7 for EXE and MTX, respectively. Cellular uptake studies demonstrated higher cellular uptake of Lf-targeted LCNPs into MCF-7 cancer cells than non-targeted LCNPs after 4 and 24 h. Collectively, the targeted dual drug-loaded LCNPs are a promising candidate offering combinational hormonal therapy/chemotherapy for breast cancer.

6.
Adv Drug Deliv Rev ; 186: 114356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595022

RESUMO

With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Nanopartículas/química , Coroa de Proteína/química , Proteínas/química , Propriedades de Superfície
7.
Pharmaceutics ; 14(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36365222

RESUMO

While breast cancer remains a global health concern, the elaboration of rationally designed drug combinations coupled with advanced biocompatible delivery systems offers new promising treatment venues. Herein, we repurposed rosuvastatin (RST) based on its selective tumor apoptotic effect and combined it with the antimetabolite pemetrexed (PMT) and the tumor-sensitizing polyphenol honokiol (HK). This synergistic three-drug combination was incorporated into protein polysaccharide nanohybrids fabricated by utilizing sodium alginate (ALG) and lactoferrin (LF), inspired by the stealth property of the former and the cancer cell targeting capability of the latter. ALG was conjugated to PMT and then coupled with LF which was conjugated to RST, forming core shell nanohybrids into which HK was physically loaded, followed by cross linking using genipin. The crosslinked HK-loaded PMT-ALG/LF-RST nanohybrids exhibited a fair drug loading of 7.86, 5.24 and 6.11% for RST, PMT and HK, respectively. It demonstrated an eight-fold decrease in the IC50 compared to the free drug combination, in addition to showing an enhanced cellular uptake by MCF-7 cells. The in vivo antitumor efficacy in a breast cancer-bearing mouse model confirmed the superiority of the triple cocktail-loaded nanohybrids. Conclusively, our rationally designed triple drug-loaded protein/polysaccharide nanohybrids offer a promising, biocompatible approach for an effective breast tumor suppression.

8.
Colloids Surf B Biointerfaces ; 217: 112657, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35803031

RESUMO

The current treatment protocols for breast cancer have shifted from single agent therapies to combinatorial approaches that offer synergistic efficacies and reduced side effects. Self-assembled nanogels comprising natural polysaccharides and functional proteins provide an intelligent platform for the targeted co-delivery of therapeutic molecules. Herein, we report the fabrication of self-assembled nanogels utilizing hydrophilic biocompatible proteins, lactoferrin (Lf), and polysaccharide carboxy methyl cellulose (CMC), for the combined delivery of the antimetabolite pemetrexed (PMT) and the herbal polyphenol honokiol (HK). PMT was conjugated to LF via an amide bond. The conjugate was then electrostatically assembled into CMC under optimized conditions to form nanogels (Lf-CMC NGs). An inclusion complex of HK with hydroxypropyl-ß-cyclodextrin was then encapsulated in the prepared Lf-CMC NGs with an entrapment efficiency of 66.67%. The dual drug-loaded cross-linked Lf-CMC NGs exhibited a particle size of 193.4 nm and zeta potential of - 34.5 mV and showed a sustained release profile for both drugs. PMT/HK-loaded Lf-CMC NGs were successfully taken up by MDA-MB-231 breast cancer cells and demonstrated superior in vitro cytotoxicity, as elucidated by a low combination index value (CI=0.17) and a higher dose reduction index (DRI) compared to those of the free drugs. An in vivo antitumor study using an Ehrlich ascites tumor (EAT) mouse model revealed the robust efficacy of PMT/HK-loaded Lf-CMC NGs in inhibiting tumor growth, which was ascribed to the reduced expression level of VEGF-1, elevated protein expression level of caspase-3, and suppressed Ki-67 protein level in the tumor tissue (P ˂0.05). In conclusion, our green fabricated self-assembled dual-loaded nanogels offer a promising biocompatible strategy for targeted combinatorial breast cancer therapy.


Assuntos
Carboximetilcelulose Sódica , Nanogéis , Fitoterapia , Animais , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Química Verde , Lactoferrina/química , Camundongos , Tamanho da Partícula , Pemetrexede
9.
Bioeng Transl Med ; 6(3): e10215, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589595

RESUMO

A growing variety of biological macromolecules are in development for use as active ingredients in topical therapies and vaccines. Dermal delivery of biomacromolecules offers several advantages compared to other delivery methods, including improved targetability, reduced systemic toxicity, and decreased degradation of drugs. However, this route of delivery is hampered by the barrier function of the skin. Recently, a large body of research has been directed toward improving the delivery of macromolecules to the skin, ranging from nucleic acids (NAs) to antigens, using noninvasive means. In this review, we discuss the latest formulation-based efforts to deliver antigens and NAs for vaccination and treatment of skin diseases. We provide a perspective of their advantages, limitations, and potential for clinical translation. The delivery platforms discussed in this review may provide formulation scientists and clinicians with a better vision of the alternatives for dermal delivery of biomacromolecules, which may facilitate the development of new patient-friendly prophylactic and therapeutic medicines.

10.
Nanomedicine (Lond) ; 16(19): 1691-1712, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34264123

RESUMO

While cancer remains a significant global health problem, advances in cancer biology, deep understanding of its underlaying mechanism and identification of specific molecular targets allowed the development of new therapeutic options. Drug repurposing poses several advantages as reduced cost and better safety compared with new compounds development. COX-2 inhibitors are one of the most promising drug classes for repurposing in cancer therapy. In this review, we provide an overview of the detailed mechanism and rationale of COX-2 inhibitors as anticancer agents and we highlight the most promising research efforts on nanotechnological approaches to enhance COX-2 inhibitors delivery with special focus on celecoxib as the most widely studied agent for chemoprevention or combined with chemotherapeutic and herbal drugs for combating various cancers.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Celecoxib , Reposicionamento de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico
11.
J Control Release ; 335: 333-344, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34048840

RESUMO

Tumor associated macrophages (TAMs) play a paradoxical role in the fate of aggressive tumors like melanoma. Immune modulation of TAMs from the tumor-permissive M2 phenotype to antitumoral M1 phenotype is an emerging attractive approach in melanoma therapy. Resiquimod is a TLR7/8 agonist that shifts the polarization of macrophages towards M1 phenotype. Bexarotene (BEX) is a retinoid that induce the expression of phagocytic receptors in macrophages besides its ability to downregulate the M2 polarization. However, the clinical use of both agents is hindered by poor pharmacokinetic properties. Here, for the first time we repurposed BEX based on its immunomodulatory properties and combined it with RES by designing hyaluronic acid (HA) conjugates of both drugs that act synergistically as a dual macrophage polarizer to promote the M1 phenotype and suppress the M2 phenotype. This combination enhanced the macrophage secretion of proinflammatory cytokines (IL-6 and TNF-α), while suppressing the production of tumor promoting cytokine CCL22. It enhanced the macrophage phagocytic ability and showed superior inhibitory effects against B16F10 cells. In vivo studies on a mouse melanoma model confirmed the superiority of the dual conjugate compared to the single HA-drug conjugates in suppressing the tumor growth. Immunoprofiling of the excised tumors revealed a significant increase in the M1/M2 ratio of TAMs in mice treated with the dual conjugate. Our intravenously injectable HA conjugate of RES and BEX provides a promising immunotherapeutic combination strategy for resetting the M1/M2 ratio, supporting the tumoricidal activity of TAMs for effective melanoma treatment.


Assuntos
Macrófagos , Melanoma , Animais , Citocinas , Imunomodulação , Melanoma/tratamento farmacológico , Camundongos , Fator de Necrose Tumoral alfa
12.
Acta Pharm Sin B ; 11(8): 2585-2604, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34522599

RESUMO

Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.

13.
Int J Nanomedicine ; 16: 4781-4803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290503

RESUMO

BACKGROUND: Tacrolimus (TAC) is a powerful immunosuppressive agent whose therapeutic applicability is confined owing to its systemic side effects. OBJECTIVE: Herein, we harnessed a natural polymer based bioconjugate composed of maltodextrin and α-tocopherol (MD-α-TOC) to encapsulate TAC as an attempt to overcome its biological limitations while enhancing its therapeutic anti-rheumatic efficacy. METHODS: The designed TAC loaded maltodextrin-α-tocopherol nano-micelles (TAC@MD-α-TOC) were assessed for their physical properties, safety, toxicological behavior, their ability to combat arthritis and assist bone/cartilage formation. RESULTS: In vitro cell viability assay revealed enhanced safety profile of optimized TAC@MD-α-TOC with 1.6- to 2-fold increase in Vero cells viability compared with free TAC. Subacute toxicity study demonstrated a diminished nephro- and hepato-toxicity accompanied with optimized TAC@MD-α-TOC. TAC@MD-α-TOC also showed significantly enhanced anti-arthritic activity compared with free TAC, as reflected by improved clinical scores and decreased IL-6 and TNF-α levels in serum and synovial fluids. Unique bone formation criteria were proved with TAC@MD-α-TOC by elevated serum and synovial fluid levels of osteocalcin and osteopontin mRNA and proteins expression. Chondrogenic differentiation abilities of TAC@MD-α-TOC were proved by increased serum and synovial fluid levels of SOX9 mRNA and protein expression. CONCLUSION: Overall, our designed bioconjugate micelles offered an excellent approach for improved TAC safety profile with enhanced anti-arthritic activity and unique bone formation characteristics.


Assuntos
Artrite Reumatoide , Micelas , Animais , Regeneração Óssea , Chlorocebus aethiops , Humanos , Nanoestruturas , Polissacarídeos , Tacrolimo , Tocoferóis , Células Vero
14.
Expert Opin Drug Deliv ; 17(4): 589-602, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067504

RESUMO

Background: Cetuximab (CTX) is a glycosylated anti-EGFR monoclonal antibody of great interest in the treatment of non-melanoma skin cancers. Its intravenous administration is associated with severe side effects. This is the first report on the noninvasive iontophoretic-targeted topical delivery of CTX to skin.Methods: Iontophoretic transport of CTX (0.5 mA/cm2) was studied as a function of formulation pH (4, 5.5 and 7) and duration of current application (2, 4 and 8 h). CTX cutaneous biodistribution was determined; electrotransport mechanisms and penetration pathways were investigated.Results: Electrophoretic mobility measurements of CTX isoforms and co-iontophoresis of acetaminophen at each pH demonstrated that CTX electrotransport was due to electroosmosis: despite an ~8-fold reduction in charge, CTX skin deposition was greater at pH 7 than pH 4 (8.974 ± 1.952 and 0.482 ± 0.165 µg/mm3) - consistent with the increased electroosmotic flow at pH 7. Iontophoresis of an Alex488-CTX conjugate showed that skin penetration occurred by the intercellular and follicular routes. Therapeutic concentrations of CTX in the viable epidermis, upper dermis and lower dermis were achieved following iontophoresis for 2, 4 and 8 h, respectively.Conclusion: The results demonstrate the topical delivery of a 152 kDa monoclonal antibody into skin in a targeted, controlled and entirely noninvasive manner.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Cetuximab/administração & dosagem , Pele/metabolismo , Acetaminofen/administração & dosagem , Administração Cutânea , Analgésicos não Narcóticos/administração & dosagem , Animais , Eletro-Osmose , Iontoforese , Absorção Cutânea , Suínos , Distribuição Tecidual
15.
J Control Release ; 318: 210-222, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843640

RESUMO

Topical treatment of mild-to-moderate psoriasis with corticosteroids suffers from challenges that include reduced drug bioavailability at the desired site of action. The retention of therapeutics within the epidermis can safely treat skin inflammation, scaling, and erythema associated with psoriasis while avoiding possible side effects associated with systemic treatments. We successfully synthesized and characterized a pH-responsive biodegradable poly-L-glutamic acid (PGA)-fluocinolone acetonide (FLUO) conjugate that allows the controlled release of the FLUO to reduce skin inflammation. Additionally, the application of a hyaluronic acid (HA)-poly-L-glutamate cross polymer (HA-CP) vehicle boosted skin permeation. During in vitro and ex vivo analyses, we discovered that PGA-FLUO inhibited pro-inflammatory cytokine release, suggesting that polypeptidic conjugation fails to affect the anti-inflammatory activity of FLUO. Additionally, ex vivo human skin permeation studies using confocal microscopy revealed the presence of PGA-FLUO within the epidermis, but a minimal presence in the dermis, thereby reducing the likelihood of FLUO entering the systemic circulation. Finally, we demonstrated that PGA-FLUO applied within HA-CP effectively reduced psoriasis-associated phenotypes in an in vivo mouse model of human psoriasis while also lowering levels of pro-inflammatory cytokines in tissue and serum. Overall, our experimental results demonstrate that PGA-FLUO within an HA-CP penetration enhancer represents an effective topical treatment for psoriasis.


Assuntos
Psoríase , Administração Tópica , Corticosteroides , Animais , Camundongos , Peptídeos/uso terapêutico , Psoríase/tratamento farmacológico , Pele
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa