Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069229

RESUMO

Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.


Assuntos
Hemostáticos , Lacticaseibacillus rhamnosus , Animais , Camundongos , Interleucina-10 , Peptidoglicano/farmacologia , Citocinas/metabolismo , Receptor PAR-1 , Receptor 3 Toll-Like , Pulmão/metabolismo , Inflamação , Mediadores da Inflamação
2.
Cytokine ; 146: 155631, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252871

RESUMO

Many attempts have been made to search for safer immunomodulatory agents that enhance the immune response and reduce the number and severity of infections in at-risk populations. The use of postbiotics, non-viable microbial cells or cell fractions that confer a health benefit to the consumer, represents a safe and attractive way to modulate and enhance the immune function in order to improve human health. Therefore, the aim of this work is to evaluate the immunoregulatory effect of Lactobacillus rhamnosus CRL1505 postbiotics in a complex culture system using human intestinal epithelial cells (IECs) and dendritic cells (DCs) differentiated from peripheral blood mononuclear cells. First, we demonstrated that L. rhamnosus CRL1505 differentially modulate human IECs and DCs after the challenge with the TLR4 agonist LPS. The CRL1505 strain down-regulated CD40, CD80 and CD86 expression in DCs, and increased their production of TNF-α, IL-1ß, IL-6 and IL-10. Interestingly, the non-viable strain was able to modulate the immune response of both types of human cells. Then, we showed that cell wall (CW1505) and peptidoglycan (PG1505) from L. rhamnosus CRL1505 modulated TLR4-triggered immune response in IECs and DCs. Of interest, CW1505 showed a strong stimulatory effect while the PG1505 presented immune characteristics that were more similar to viable and non-viable CRL1505. To date, several molecules of immunobiotics were identified, that can be connected to specific host-responses. We hereby demonstrated that peptidoglycan of L. rhamnosus CRL1505 is a key molecule for the immunobiotic properties of this strain in human IECs and DCs. Likewise, the result of these studies could provide predictive tools for the in vivo efficacy of postbiotics and the scientific basis for their future applications in immunocompromised patients.


Assuntos
Imunomodulação , Lacticaseibacillus rhamnosus/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Enterócitos/metabolismo , Células HT29 , Humanos , Viabilidade Microbiana , Modelos Biológicos , NF-kappa B/metabolismo
3.
Inflamm Res ; 65(10): 771-83, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27279272

RESUMO

OBJECTIVE: Intestinal intraepithelial lymphocytes (IELs) play critical roles in disrupting epithelial homeostasis after Toll-like receptor (TLR)-3 activation with genomic rotavirus dsRNA or the synthetic dsRNA analog poly(I:C). The capacity of immunobiotic Lactobacillus rhamnosus CRL1505 (Lr1505) or Lactobacillus plantarum CRL1506 (Lp1506) to beneficially modulate IELs response after TLR3 activation was investigated in vivo using a mice model. RESULTS: Intraperitoneal administration of poly(I:C) induced inflammatory-mediated intestinal tissue damage through the increase of inflammatory cells (CD3(+)NK1.1(+), CD3(+)CD8αα(+), CD8αα(+)NKG2D(+)) and pro-inflammatory mediators (TNF-α, IL-1ß, IFN-γ, IL-15, RAE1, IL-8). Increased expression of intestinal TLR3, MDA5, and RIG-I was also observed after poly(I:C) challenge. Treatment with Lr1505 or Lp1506 prior to TLR3 activation significantly reduced the levels of TNF-α, IL-15, RAE1, and increased serum and intestinal IL-10. Moreover, CD3(+)NK1.1(+), CD3(+)CD8αα(+), and CD8αα(+)NKG2D(+) cells were lower in lactobacilli-treated mice when compared to controls. The immunomodulatory capacities of lactobacilli allowed a significant reduction of intestinal tissue damage. CONCLUSIONS: This work demonstrates the reduction of TLR3-mediated intestinal tissue injury by immunobiotic lactobacilli through the modulation of intraepithelial lymphocytes response. It is a step forward in the understanding of the cellular mechanisms involved in the antiviral capabilities of immunobiotic strains.


Assuntos
Enterite/terapia , Lacticaseibacillus rhamnosus , Lactobacillus plantarum , Probióticos/uso terapêutico , Receptor 3 Toll-Like/agonistas , Animais , Líquido Ascítico/citologia , Aspartato Aminotransferases/sangue , Citocinas/sangue , Citocinas/metabolismo , Enterite/induzido quimicamente , Enterite/metabolismo , Enterite/patologia , Secreções Intestinais/metabolismo , Intestinos/citologia , Intestinos/patologia , L-Lactato Desidrogenase/sangue , Contagem de Leucócitos , Linfócitos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Poli I-C
4.
Inflamm Res ; 64(8): 589-602, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26072063

RESUMO

OBJECTIVE: To evaluate the effect of the nasal administration of live and heat-killed Lactobacillus rhamnosus CRL1505 (Lr1505) on immune-coagulative response during influenza virus (IFV) infection to improve survival and reduce lung injury. METHODS: Six-week-old BALB/c mice were treated with live or heat-killed Lr1505 by the nasal route during two consecutive days. Treated and untreated control mice were then nasally challenged with IFV. RESULTS: Both viable and non-viable Lr1505 protected infected mice by reducing pulmonary injury and lung viral loads trough several mechanisms: (a) Inflammatory cytokines were efficiently regulated allowing higher clearance of virus and reduction of inflammatory lung tissue damage, associated to higher levels of the regulatory cytokine IL-10. (b) The antiviral immune response was enhanced with improved levels of type I interferons, CD4(+)IFN-γ(+) lymphocytes, and lung CD11c(+)CD11b(low)CD103(+) and CD11c(+)CD11b(high)CD103(-) dendritic cells. (c) The procoagulant state was reversed mainly by down-regulating tissue factor expression and restoring thrombomodulin levels in lung. The capacity of Lr1505 to improve the outcome of IFV infection would be related to its ability to beneficially modulate lung TLR3-triggered immune response. CONCLUSIONS: Our work is the first to demonstrate the ability of an immunobiotic strain to beneficially modulate inflammation-coagulation interactions during IFV infection. Interestingly, non-viable L. rhamnosus CRL1505 was as effective as the viable strain to beneficially modulate respiratory antiviral immune response.


Assuntos
Lesão Pulmonar Aguda/imunologia , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus , Infecções por Orthomyxoviridae/imunologia , Probióticos/farmacologia , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Administração Intranasal , Animais , Coagulação Sanguínea , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/sangue , Citocinas/imunologia , Contagem de Leucócitos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Contagem de Plaquetas , Poli I-C/farmacologia
5.
BMC Microbiol ; 14: 126, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24886142

RESUMO

BACKGROUND: Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. RESULTS: We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer's patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN-α and -ß in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1ß, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. CONCLUSIONS: It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus/imunologia , Probióticos/farmacologia , Animais , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/genética , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Suínos
6.
Microbes Infect ; 26(4): 105311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342337

RESUMO

We evaluated whether viable and non-viable Lacticaseibacillus rhamnosus CRL1505 (Lr05V or Lr05NV, respectively) was able to improve emergency myelopoiesis induced by Streptococcus pneumoniae (Sp) infection. Adult Swiss-mice were orally treated with Lr05V or Lr05NV during five consecutive days. The Lr05V and Lr05NV groups and untreated control group received an intraperitoneal dose of cyclophosphamide (Cy-150 mg/kg). Then, the mice were nasally challenged with Sp (107 UFC/mice) on day 3 post-Cy injection. After the pneumococcal challenge, the innate and myelopoietic responses were evaluated. The control group showed a high susceptibility to pneumococcal infection, an impaired innate immune response and a decrease of hematopoietic stem cells (HSCs: Lin-Sca-1+c-Kit+), and myeloid multipotent precursors (MMPs: Gr-1+Ly6G+Ly6C-) in bone marrow (BM). However, lactobacilli treatments were able to significantly increase blood neutrophils and peroxidase-positive cells, while improving cytokine production and phagocytic activity of alveolar macrophages. This, in turn, led to an early Sp lung clearance compared to the control group. Furthermore, Lr05V was more effective than Lr05NV to increase growth factors in BM, which allowed an early HSCs and MMPs recovery with respect to the control group. Both Lr05V and Lr05NV were able to improve BM emergency myelopiesis and protection against respiratory pathogens in mice undergoing chemotherapy.


Assuntos
Hospedeiro Imunocomprometido , Lacticaseibacillus rhamnosus , Mielopoese , Probióticos , Streptococcus pneumoniae , Animais , Camundongos , Mielopoese/efeitos dos fármacos , Lacticaseibacillus rhamnosus/imunologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Streptococcus pneumoniae/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Imunidade Inata , Modelos Animais de Doenças , Citocinas/metabolismo , Ciclofosfamida/farmacologia , Neutrófilos/imunologia , Masculino
7.
J Nutr ; 143(2): 227-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23269656

RESUMO

The ability of nasally administered Lactobacillus rhamnosus CRL1505 to accelerate the recovery of respiratory B cell-mediated immunity against pneumococcal infection in replete malnourished mice was evaluated. Weaned mice were malnourished after consumption of a protein-free diet for 21 d. Malnourished mice were fed a balanced conventional diet (BCD) for 7 d (BCD group) or a BCD for 7 d with supplemental L. rhamnosus CRL1505 by the nasal route during the last 2 d (BCD+Lr group). Nonreplete malnourished and normal mice were used as the malnourished (MNC) and the well-nourished (WNC) control groups, respectively. Mice were challenged with Streptococcus pneumoniae at the end of each dietary treatment. The immune response was studied before the challenge and at different times postinfection. The MNC mice had less resistance to pneumococcal infection, fewer mature and immature B cells in lung and spleen, and a reduced production of specific antibodies compared with WNC mice. The BCD treatment did not induce a complete normalization of the number B cell populations and antibody amounts. However, the BCD+Lr group had normal numbers of spleen and lung B cells. Moreover, the BCD+Lr mice had a significantly lower susceptibility to S. pneumoniae infection and higher amounts of anti-pneumococcal antibodies. Although further studies are necessary to clarify the effect of malnutrition and nasally administered lactobacilli in other immune cell populations involved in the protection against respiratory pathogens, this work gives evidence of the importance of using nasal priming with probiotics to accelerate the recovery of respiratory immunity in immunocompromised malnourished hosts.


Assuntos
Linfócitos B/imunologia , Imunidade Humoral , Lacticaseibacillus rhamnosus/imunologia , Linfopenia/terapia , Desnutrição/imunologia , Probióticos/administração & dosagem , Mucosa Respiratória/imunologia , Administração Intranasal , Animais , Anticorpos Antibacterianos/análise , Dieta com Restrição de Proteínas/efeitos adversos , Resistência à Doença , Hospedeiro Imunocomprometido , Pulmão/imunologia , Linfopenia/etiologia , Linfopenia/imunologia , Masculino , Desnutrição/dietoterapia , Desnutrição/etiologia , Desnutrição/fisiopatologia , Camundongos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Probióticos/uso terapêutico , Mucosa Respiratória/microbiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Baço/imunologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação
8.
BMC Immunol ; 13: 53, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22989047

RESUMO

BACKGROUND: Some studies have shown that probiotics, including Lactobacillus rhamnosus CRL1505, had the potential to beneficially modulate the outcome of certain bacterial and viral respiratory infections. However, these studies did not determine the mechanism(s) by which probiotics contribute to host defense against respiratory viruses. RESULTS: In this work we demonstrated that orally administered Lactobacillus rhamnosus CRL1505 (Lr1505) was able to increase the levels of IFN-γ, IL-10 and IL-6 in the respiratory tract and the number of lung CD3(+)CD4(+)IFN-γ(+) T cells. To mimic the pro-inflammatory and physiopathological consecuences of RNA viral infections in the lung, we used an experimental model of lung inflammation based on the administration of the artificial viral pathogen-associated molecular pattern poly(I:C). Nasal administration of poly(I:C) to mice induced a marked impairment of lung function that was accompanied by the production of pro-inflammatory mediators and inflammatory cell recruitment into the airways. The preventive administration of Lr1505 reduced lung injuries and the production of TNF-α, IL-6, IL-8 and MCP-1 in the respiratory tract after the challenge with poly(I:C). Moreover, Lr1505 induced a significant increase in lung and serum IL-10. We also observed that Lr1505 was able to increase respiratory IFN-γ levels and the number of lung CD3(+)CD4(+)IFN-γ(+) T cells after poly(I:C) challenge. Moreover, higher numbers of both CD103(+) and CD11b(high) dendritic cells and increased expression of MHC-II, IL-12 and IFN-γ in these cell populations were found in lungs of Lr1505-treated mice. Therefore, Lr1505 treatment would beneficially regulate the balance between pro-inflammatory mediators and IL-10, allowing an effective inflammatory response against infection and avoiding tissue damage. CONCLUSIONS: Results showed that Lr1505 would induce a mobilization of cells from intestine and changes in cytokine profile that would be able to beneficially modulate the respiratory mucosal immunity. Although deeper studies are needed using challenges with respiratory viruses, the results in this study suggest that Lr1505, a potent inducer of antiviral cytokines, may be useful as a prophylactic agent to control respiratory virus infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Lacticaseibacillus rhamnosus , Probióticos/administração & dosagem , Infecções por Vírus de RNA/imunologia , Administração Oral , Animais , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD4-Positivos/virologia , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/virologia , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poli I-C/administração & dosagem , Sistema Respiratório/patologia
9.
Microbiol Immunol ; 56(11): 771-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22846065

RESUMO

Lactobacillus rhamnosus CRL1505 (Lr1505), L. rhamnosus CRL1506 (Lr1506) and L. casei CRL431 (Lc431) are able to stimulate intestinal immunity, but only Lr1505 and Lc431 are able to stimulate immunity in the respiratory tract. With the aim of advancing the understanding of the immunological mechanisms involved in stimulation of distant mucosal sites, this study evaluated the effects of orally administered probiotics on the functions of alveolar and peritoneal macrophages. Compared to a control group, these three lactobacilli were able to significantly increase phagocytic and microbicidal activities of peritoneal macrophages. After intraperitoneal challenge with pathogenic Candida albicans, mice treated with immunobiotics had significantly lower pathogen counts in infected organs. Moreover, lactobacilli-treated mice had a stronger immune response against C. albicans. On the other hand, only Lc1505 and Lc431 were able to improve activity of and cytokine production by alveolar macrophages. Only in these two groups was there better resistance to respiratory challenge with C. albicans, which correlated with improved respiratory immune response. The results of this study suggest that consumption of some probiotic strains could be useful for improving resistance to infections in sites distant from the gut by increasing the activity of macrophages at those sites.


Assuntos
Fatores Imunológicos/administração & dosagem , Lacticaseibacillus casei/imunologia , Lacticaseibacillus rhamnosus/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Peritoneais/imunologia , Probióticos/administração & dosagem , Animais , Candida albicans/imunologia , Candidíase/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Viabilidade Microbiana , Fagocitose
10.
Microorganisms ; 10(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336209

RESUMO

This work aimed to evaluate the adjuvant treatment to surgical debridement using topical applications of Lactiplantibacillus plantarum ATCC 10241 cultures in complicated diabetic foot ulcers as compared to diabetic foot ulcers receiving surgical wound debridement. A randomised controlled trial was performed involving 22 outpatients with complicated diabetic foot ulcers that either received surgical debridement (SuDe, n = 12) or surgical debridement plus topical applications of L. plantarum cultures (SuDe + Lp, n = 10) every week during a 12 week treatment period. Compared to patients receiving SuDe, patients treated with SuDe + Lp exhibited significantly increased fibroplasia and angiogenesis, as determined by Masson's trichrome staining and the study of CD34 cells, α-smooth muscle actin to semi-quantify vascular area, number of vessels and endothelial cells. In addition, a promotion of the polarisation of macrophages from M1 (CD68) to M2 (CD163) phenotype was observed in SuDe + Lp patients with remarkable differences in the tissue localisation. Bacterial counts were significantly diminished in the SuDe + Lp group compared to the SuDe group. Ex vivo assays, using polymorphonuclears isolated from peripheral blood of patients with diabetes and healthy individuals and challenged with Staphylococcus aureus demonstrated that the addition of L. plantarum supernatants significantly improved the phagocytosis of these cells. L. plantarum-secreted components increased the neutrophils bactericidal activity and regulated the netosis induced by S. aureus. At day 49, the average wound area reduction with SuDe + Lp was 73.5% compared with 45.8% for SuDe (p < 0.05). More patients progressed to closure with SuDe + Lp compared with SuDe treatment, indicating the ability of L. plantarum to accelerate the healing. At day 60, 60% of patients treated with SuDe + Lp achieved 100% of wound area reduction compared with 40% for SuDe. We propose that SuDe + Lp could be an effective adjuvant to surgical debridement when SuDe is not satisfactory for patients with complicated diabetic foot ulcers. The treatment is cheap and easy to apply and the product is easy to obtain.

11.
Microbiol Immunol ; 55(6): 434-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21395664

RESUMO

The effect of Lactobacillus casei CRL 431 (Lc), when administered as a supplement to a repletion diet, on the resistance of malnourished mice to Candida albicans infection was studied. Weaned mice were malnourished by being given a protein-free diet (PFD) for 21 days. The malnourished mice were then fed a balanced conventional diet (BCD) for 7 days or BCD for 7 days with supplemental Lc on days 6 and 7 (BCD+Lc). Malnourished (MNC) and well-nourished (WNC) mice were used as controls. At the end of the treatments the mice were infected intraperitoneally with C. albicans. Animals that had received probiotics had improved survival and resistance against this infection compared to those in the BCD and MNC groups. The number and fungicidal activity of phagocytes, and the concentrations of tumor necrosis factor-α, interferon-γ and interleukin-6 (IL-6), increased in blood and infected tissues in all experimental groups, but MNC mice showed lower concentrations than those in the WNC group. BCD and BCD+Lc mice showed higher concentrations of these variables than those in the MNC group, but only the BCD+Lc group presented values similar to the WNC mice. Malnutrition also impaired the production of IL-17 and IL-10 in response to infection. Both repletion treatments normalized IL-17 concentrations, but IL-10 in the BCD+Lc group was significantly higher than in WNC mice. The addition of L. casei to the repletion diet normalized the immune response against C. albicans, allowing efficient recruitment and activation of phagocytes, as well as effective release of pro-inflammatory cytokines. In addition, probiotic treatment induced an increase in IL-10 concentrations, which would have helped to prevent damage caused by the inflammatory response.


Assuntos
Antibiose , Candida albicans/crescimento & desenvolvimento , Candidíase/prevenção & controle , Lacticaseibacillus casei/fisiologia , Desnutrição/complicações , Probióticos , Animais , Citocinas/sangue , Dieta/métodos , Modelos Animais de Doenças , Masculino , Camundongos , Fagócitos/imunologia , Doenças dos Roedores/prevenção & controle , Análise de Sobrevida
12.
J Sci Food Agric ; 91(13): 2355-62, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21604277

RESUMO

BACKGROUND: Lactobacillus rhamnosus CRL1505, a strain of goats' milk origin, is able to stimulate mucosal immunity and protect immunocompetent mice from intestinal and respiratory infections. RESULTS: In this work we developed and characterized a fermented goats' milk containing L. rhamnosus CRL1505, and we demonstrated in a model of immunosuppression in mice that the final dairy product preserves the immunomodulatory properties of the strain. L. rhamnosus CRL1505 survived the manufacturing process of fermented milk and maintained a viability of 10(6) cfu g(-1) during storage. The fermented goats' milk was accepted by 90.48% of the panelists and was considered as having an acid taste and pleasant aroma. We also demonstrated that the developed product, used as a supplement during the repletion of immunocompromised malnourished mice, was effective in accelerating the recovery of clinical parameters altered by malnutrition and to induce increased resistance against intestinal and respiratory infections. CONCLUSION: Goats' milk fermented with L. rhamnosus CRL1505 could be manufactured as an alternative probiotic dairy product since this new food has the ability to stimulate the common mucosal immune system and to improve defenses against respiratory and intestinal infections.


Assuntos
Produtos Fermentados do Leite/microbiologia , Imunidade nas Mucosas , Hospedeiro Imunocomprometido , Imunomodulação , Lacticaseibacillus rhamnosus/imunologia , Adolescente , Animais , Argentina , Criança , Resistência à Doença , Manipulação de Alimentos , Preferências Alimentares , Cabras , Humanos , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/isolamento & purificação , Lacticaseibacillus rhamnosus/metabolismo , Masculino , Desnutrição/dietoterapia , Desnutrição/imunologia , Desnutrição/fisiopatologia , Camundongos , Viabilidade Microbiana , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/prevenção & controle , Intoxicação Alimentar por Salmonella/imunologia , Intoxicação Alimentar por Salmonella/prevenção & controle
13.
Front Nutr ; 8: 704868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458307

RESUMO

Malnutrition is associated with a state of secondary immunodeficiency, which is characterized by a worsening of the immune response against infectious agents. Despite important advances in vaccines and antibiotic therapies, the respiratory infections are among the leading causes of increased morbidity and mortality, especially in immunosuppressed hosts. In this review, we examine the interactions between immunobiotics-postbiotics and the immune cell populations of the respiratory mucosa. In addition, we discuss how this cross talk affects the maintenance of a normal generation of immune cells, that is crucial for the establishment of protective innate and adaptive immune responses. Particular attention will be given to the alterations in the development of phagocytic cells, T and B lymphocytes in bone marrow, spleen and thymus in immunosuppression state by protein deprivation. Furthermore, we describe our research that demonstrated that the effectiveness of immunobiotics nasal administration in accelerating the recovery of the respiratory immune response in malnourished hosts. Finally, we propose the peptidoglycan from the immunobiotic Lactobacillus rhamnosus CRL1505 as the key cellular component for the effects on mucosal immunity, which are unique and cannot be extrapolated to other L. rhamnosus or probiotic strains. In this way, we provide the scientific bases for its application as a mucosal adjuvant in health plans, mainly aimed to improve the immune response of immunocompromised hosts. The search for safe vaccine adjuvants that increase their effectiveness at the mucosal level is a problem of great scientific relevance today.

14.
Front Immunol ; 12: 647049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912172

RESUMO

Myelosuppression is the major dose-limiting toxicity of cancer chemotherapy. There have been many attempts to find new strategies that reduce myelosuppression. The dietary supplementation with lactic acid bacteria (LAB) improved respiratory innate immune response and the resistance against respiratory pathogens in immunosupressed hosts. Although LAB viability is an important factor in achieving optimal protective effects, non-viable LAB are capable of stimulating immunity. In this work, we studied the ability of oral preventive administration of viable and non-viable Lactobacillus rhamnosus CRL1505 or L. plantarum CRL1506 (Lr05, Lr05NV, Lp06V or Lp06NV, respectively) to minimize myelosuppressive and immunosuppressive effects derived from chemotherapy. Cyclophosphamide (Cy) impaired steady-state myelopoiesis in lactobacilli-treated and untreated control mice. Lr05V, Lr05NV and Lp06V treatments were the most effective to induce the early recovery of bone marrow (BM) tissue architecture, leukocytes, myeloid, pool mitotic and post-mitotic, peroxidase positive, and Gr-1Low/High cells in BM. We selected the CRL1505 strain for being the one capable of maintaining its myelopoiesis-enhancing properties in its non-viable form. Although the CRL1505 treatments do not modify the Cy ability to induce apoptosis, both increased the incorporation of BrdU in BM cells. Consequently, Lr05NV and Lr05V treatments were able to promote early recovery of LSK cells (Lin-Sca-1+c-Kit+ cells), multipotent progenitors (Lin-Sca-1+c-Kit+CD34+ cells), and myeloid cells (Gr-1+Ly6G+Ly6C- cells) with respect to the untreated Cy control. In addition, these treatments were able to increase the frequency of IL17A-producing innate lymphoid cells in the intestinal lamina propria (IL-17A+RORγt+CD4-NKp46+ cells) after Cy injection. These results were correlated with an increase in the IL-17A serum levels, a GM-CSF high expression and a CXCL12 lower expression in BM. Therefore, both Lr05V and Lr05NV treatments are able to activate beneficially the IL-17A/GM-CSF axis and accelerate the recovery of Cy-induced immunosuppression by increasing BM myeloid precursors. We demonstrated for the first time the beneficial effect of CRL1505 strain on myelopoiesis affected by a chemotherapeutic drug. Furthermore, Lr05NV could be a good and safe resource for reducing chemotherapy-induced leukopenia. The results are a starting point for future research and open up broad prospects for future applications of the immunobiotics.


Assuntos
Ciclofosfamida/toxicidade , Hospedeiro Imunocomprometido/efeitos dos fármacos , Lacticaseibacillus rhamnosus/imunologia , Lactobacillus/imunologia , Mielopoese/efeitos dos fármacos , Probióticos/administração & dosagem , Administração Oral , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Hospedeiro Imunocomprometido/imunologia , Imunossupressores/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Contagem de Leucócitos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Mielopoese/imunologia
15.
Saudi J Biol Sci ; 28(10): 5684-5692, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588880

RESUMO

Lactobacillus (L.) rhamnosus CRL1505 accumulates inorganic polyphosphate (polyP) in its cytoplasm in response to environmental stress. The aim of this study was to evaluate the potential effects of polyP from the immunobiotic CRL1505 on an acute respiratory inflammation murine animal model induced by lipopolysaccharide (LPS). First, the presence of polyP granules in the cytoplasm of CRL1505 strain was evidenced by specific staining. Then, it was demonstrated in the intracellular extracts (ICE) of CRL1505 that polyP chain length is greater than 45 phosphate residues. In addition, the functionality of the genes involved in the polyP metabolism (ppk, ppx1 and ppx2) was corroborated by RT-PCR. Finally, the possible effect of the ICE of CRL1505 strain containing polyP and a synthetic polyP was evaluated in vivo using a murine model of acute lung inflammation. It was observed that the level of cytokines pro-inflammatory (IL-17, IL-6, IL-2, IL-4, INF-γ) in serum was normalized in mice treated with ICE, which would indicate that polyP prevents the local inflammatory response in the respiratory tract. The potential application of ICE from L. rhamnosus CRL1505 as a novel bioproduct for the treatment of respiratory diseases is one of the projections of this work.

16.
Microorganisms ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34361921

RESUMO

Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.

17.
Probiotics Antimicrob Proteins ; 12(2): 494-504, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31030404

RESUMO

The effect of Lactobacillus rhamnosus CRL1505 (Lr) on macrophages (Ma) and dendritic cells (DC) in the orchestration of anti-pneumococcal immunity was studied using malnutrition and pneumococcal infection mouse models. Monocytes (Mo), Ma, and DC in two groups of malnourished mice fed with balanced diet (BCD) were studied through flow cytometry; one group was nasally administered with Lr (BCD+Lr group), and the other group was not (BCD group). Well-nourished (WNC) and malnourished (MNC) mice were used as controls.Malnutrition affected the number of respiratory and splenic mononuclear phagocytes. The BCD+Lr treatment, unlike BCD, was able to increase and normalize lung Mo and Ma. The BCD+Lr mice were also able to upregulate the expression of the activation marker MHC II in lung DC and to improve this population showing a more significant effect on CD11b+ DC subpopulation. At post-infection, lung Mo values were higher in BCD+Lr mice than in BCD mice and similar to those obtained in WNC group. Although both repletion treatments showed similar values of lung Ma post-infection, the Ma activation state in BCD+Lr mice was higher than that in BCD mice. Furthermore, BCD+Lr treatment was able to normalize the number and activation of splenic Ma and DC after the challenge.Lr administration stimulates respiratory and systemic mononuclear phagocytes. Stimulation of Ma and DC populations would increase the microbicide activity and improve the adaptive immunity through its antigen-presenting capacity. Thus, Lr contributes to improved outcomes of pneumococcal infection in immunocompromised hosts.


Assuntos
Imunidade , Lacticaseibacillus rhamnosus , Desnutrição/terapia , Infecções Pneumocócicas/terapia , Probióticos/administração & dosagem , Animais , Células Dendríticas/citologia , Pulmão/imunologia , Macrófagos/citologia , Masculino , Camundongos , Infecções Pneumocócicas/imunologia , Baço/imunologia
18.
Front Immunol ; 11: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038659

RESUMO

Non-viable lactic acid bacteria (LAB) have been proposed as antigen delivery platforms called bacterium-like particles (BLPs). Most studies have been performed with Lactococcus lactis-derived BLPs where multiple antigens were attached to the peptidoglycan surface and used to successfully induce specific immune responses. It is well-established that the immunomodulatory properties of LAB are strain dependent and therefore, the BLPs derived from each individual strain could have different adjuvant capacities. In this work, we obtained BLPs from immunomodulatory (immunobiotics) and non-immunomodulatory Lactobacillus rhamnosus and Lactobacillus plantarum strains and comparatively evaluated their ability to improve the intestinal and systemic immune responses elicited by an attenuated rotavirus vaccine. Results demonstrated that orally administered BLPs from non-immunomodulatory strains did not induce significant changes in the immune response triggered by rotavirus vaccine in mice. On the contrary, BLPs derived from immunobiotic lactobacilli were able to improve the levels of anti-rotavirus intestinal IgA and serum IgG, the numbers of CD24+B220+ B and CD4+ T cells in Peyer's patches and spleen as well as the production of IFN-γ by immune cells. Interestingly, among immunobiotics-derived BLPs, those obtained from L. rhamnosus CRL1505 and L. rhamnosus IBL027 enhanced more efficiently the intestinal and systemic humoral immune responses when compared to BLPs from other immunobiotic bacteria. The findings of this work indicate that it is necessary to perform an appropriate selection of BLPs in order to find those with the most efficient adjuvant properties. We propose the term Immunobiotic-like particles (IBLPs) for the BLPs derived from CRL1505 and IBL027 strains that are an excellent alternative for the development of mucosal vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Imunidade nas Mucosas , Imunização/métodos , Mucosa Intestinal/imunologia , Lacticaseibacillus rhamnosus/imunologia , Lactobacillus plantarum/imunologia , Vacinas contra Rotavirus/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Imunogenicidade da Vacina , Imunoglobulina A/metabolismo , Imunoglobulina G/sangue , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Vacinas contra Rotavirus/imunologia , Vacinas Atenuadas/imunologia
19.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660087

RESUMO

The nasal priming with nonviable Lactobacillus rhamnosus CRL1505 (NV1505) or its purified peptidoglycan (PG1505) differentially modulates the respiratory innate immune response in infant mice, improving their resistance to primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, it was found that NV1505 or PG1505 significantly enhance the numbers of CD11c+SiglecF+ alveolar macrophages (AMs) producing interferon (IFN)-ß. In this work, we aimed to further advance in the characterization of the beneficial effects of NV1505 and PG1505 in the context of a respiratory superinfection by evaluating whether their immunomodulatory properties are dependent on AM functions. Macrophage depletion experiments and a detailed study of their production of cytokines and antiviral factors clearly demonstrated the key role of this immune cell population in the improvement of both the reduction of pathogens loads and the protection against lung tissue damage induced by the immunobiotic CRL1505 strain. Studies at basal conditions during primary RSV or S. pneumoniae infections, as well as during secondary pneumococcal pneumonia, brought the following five notable findings regarding the immunomodulatory effects of NV1505 and PG1505: (a) AMs play a key role in the beneficial modulation of the respiratory innate immune response and protection against RSV infection, (b) AMs are necessary for improved protection against primary and secondary pneumococcal pneumonia, (c) the generation of activated/trained AMs would be essential for the enhanced protection against respiratory pathogens, (d) other immune and nonimmune cell populations in the respiratory tract may contribute to the protection against bacterial and viral infections, and (e) the immunomodulatory properties of NV1505 and PG1505 are strain-specific. These findings significantly improve our knowledge about the immunological mechanisms involved in the modulation of respiratory immunity induced by beneficial microbes.


Assuntos
Fatores Imunológicos/uso terapêutico , Macrófagos Alveolares/imunologia , Peptidoglicano/uso terapêutico , Infecções Pneumocócicas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Antígenos CD11/genética , Antígenos CD11/metabolismo , Células Cultivadas , Chlorocebus aethiops , Imunidade Inata , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Peptidoglicano/farmacologia , Infecções Pneumocócicas/terapia , Infecções por Vírus Respiratório Sincicial/terapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Células Vero
20.
Front Immunol ; 10: 1376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263467

RESUMO

Lactobacillus fermentum UCO-979C, a strain isolated from a human stomach, was previously characterized by its potential probiotic properties. The UCO-979C strain displayed the ability to beneficially regulate the innate immune response triggered by Helicobacter pylori infection in human gastric epithelial cells. In this work, we conducted further in vitro studies in intestinal epithelial cells (IECs) and in vivo experiments in mice in order to characterize the potential immunomodulatory effects of L. fermentum UCO-979C on the intestinal mucosa. Results demonstrated that the UCO-979C strain is capable to differentially modulate the immune response of IECs triggered by Toll-like receptor 4 (TLR4) activation through the modulation of TLR negative regulators' expression. In addition, we demonstrated for the first time that L. fermentum UCO-979C is able to exert its immunomodulatory effect in the intestinal mucosa in vivo. The feeding of mice with L. fermentum UCO-979C significantly increased the production of intestinal IFN-γ, stimulated intestinal and peritoneal macrophages and increased the number of Peyer's patches CD4+ T cells. In addition, L. fermentum UCO-979C augmented intestinal IL-6, reduced the number of immature B220+CD24high B cells from Peyer's patches, enhanced the number of mature B B220+CD24low cells, and significantly increased intestinal IgA content. The results of this work revealed that L. fermentum UCO-979C has several characteristics making it an excellent candidate for the development of immunobiotic functional foods aimed to differentially regulate immune responses against gastric and intestinal pathogens.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mucosa Intestinal/microbiologia , Limosilactobacillus fermentum/fisiologia , Animais , Células Cultivadas , Humanos , Imunidade Inata , Imunoglobulina A/metabolismo , Imunomodulação , Interferon gama/metabolismo , Mucosa Intestinal/imunologia , Ativação de Macrófagos , Camundongos , Probióticos , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa