Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Perinatol ; 47(1): 171-182, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32000924

RESUMO

Heterotaxy is a generalized term for patients who have an abnormality of laterality that cannot be described as situs inversus. Infants with heterotaxy can have significant anatomic and medical complexity and require personalized, specialized care, including comprehensive anatomic assessment. Common and rare anatomic findings are reviewed by system to help guide a thorough phenotypic evaluation. General care guidelines and considerations unique to this patient population are included. Future directions for this unique patient population, particularly in light of improved neonatal survival, are discussed.


Assuntos
Síndrome de Heterotaxia/diagnóstico , Síndrome de Heterotaxia/terapia , Doenças Raras/diagnóstico , Doenças Raras/terapia , Diagnóstico Diferencial , Humanos , Recém-Nascido , Triagem Neonatal
2.
Front Cell Dev Biol ; 8: 440, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656206

RESUMO

Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease; however, its etiology remains largely unknown. We previously demonstrated that genetic variants in the MYH6 gene are significantly associated with HLHS. Additionally, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from an HLHS-affected family trio (affected parent, unaffected parent, affected proband) carrying an MYH6-R443P head domain variant demonstrated dysmorphic sarcomere structure and increased compensatory MYH7 expression. Analysis of iPSC-CMs derived from the HLHS trio revealed that only beta myosin heavy chain expression was observed in CMs carrying the MYH6-R443P variant after differentiation day 15 (D15). Functional assessments performed between D20-D23 revealed that MYH6-R443P variant CMs contracted more slowly (40 ± 2 vs. 47 ± 2 contractions/min, P < 0.05), shortened less (5.6 ± 0.5 vs. 8.1 ± 0.7% of cell length, P < 0.05), and exhibited slower shortening rates (19.9 ± 1.7 vs. 28.1 ± 2.5 µm/s, P < 0.05) and relaxation rates (11.0 ± 0.9 vs. 19.7 ± 2.0 µm/s, P < 0.05). Treatment with isoproterenol had no effect on iPSC-CM mechanics. Using CRISPR/Cas9 gene editing technology, introduction of the R443P variant into the unaffected parent's iPSCs recapitulated the phenotype of the proband's iPSC-CMs, and conversely, correction of the R443P variant in the proband's iPSCs rescued the cardiomyogenic differentiation, sarcomere organization, slower contraction (P < 0.05) and decreased velocity phenotypes (P < 0.0001). This is the first report to identify that cardiac tissues from HLHS patients with MYH6 variants can exhibit sarcomere disorganization in atrial but not ventricular tissues. This new discovery was not unexpected, since MYH6 is expressed predominantly in the postnatal atria in humans. These findings demonstrate the feasibility of employing patient-derived iPSC-CMs, in combination with patient cardiac tissues, to gain mechanistic insight into how genetic variants can lead to HLHS. Results from this study suggest that decreased contractility of CMs due to sarcomere disorganization in the atria may effect hemodynamic changes preventing development of a normal left ventricle.

3.
Mol Genet Genomic Med ; 8(4): e1152, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31985165

RESUMO

BACKGROUND: Ebstein's anomaly (EA) is a rare congenital heart disease of the tricuspid valve and right ventricle. Patients with EA often manifest with left ventricular noncompaction (LVNC), a cardiomyopathy. Despite implication of cardiac sarcomere genes in some cases, very little is understood regarding the genetic etiology of EA/LVNC. Our study describes a multigenerational family with at least 10 of 17 members affected by EA/LVNC. METHODS: We performed echocardiography on all family members and conducted exome sequencing of six individuals. After identifying candidate variants using two different bioinformatic strategies, we confirmed segregation with phenotype using Sanger sequencing. We investigated structural implications of candidate variants using protein prediction models. RESULTS: Exome sequencing analysis of four affected and two unaffected members identified a novel, rare, and damaging coding variant in the Kelch-like family member 26 (KLHL26) gene located on chromosome 19 at position 237 of the protein (GRCh37). This variant region was confirmed by Sanger sequencing in the remaining family members. KLHL26 (c.709C > T p.R237C) segregates only with EA/LVNC-affected individuals (FBAT p < .05). Investigating structural implications of the candidate variant using protein prediction models suggested that the KLHL26 variant disrupts electrostatic interactions when binding to part of the ubiquitin proteasome, specifically Cullin3 (CUL3), a component of E3 ubiquitin ligase. CONCLUSION: In this familial case of EA/LVNC, we have identified a candidate gene variant, KLHL26 (p.R237C), which may have an important role in ubiquitin-mediated protein degradation during cardiac development.


Assuntos
Anomalia de Ebstein/genética , Cardiopatias Congênitas/genética , Mutação com Perda de Função , Adulto , Sítios de Ligação , Criança , Pré-Escolar , Proteínas Culina/metabolismo , Anomalia de Ebstein/patologia , Feminino , Testes Genéticos , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Ligação Proteica
4.
G3 (Bethesda) ; 5(11): 2299-306, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26333838

RESUMO

Cranial radiation therapy (CRT) is an effective treatment for pediatric central nervous system malignancies, but survivors often suffer from neurological and neurocognitive side effects that occur many years after radiation exposure. Although the biological mechanisms underlying these deleterious side effects are incompletely understood, radiation exposure triggers an acute inflammatory response that may evolve into chronic inflammation, offering one avenue of investigation. Recently, we developed a Drosophila model of the neurotoxic side effects of radiation exposure. Here we use this model to investigate the role of the innate immune system in response to radiation exposure. We show that the innate immune response and NF-ĸB target gene expression is activated in the adult Drosophila brain following radiation exposure during larval development, and that this response is sustained in adult flies weeks after radiation exposure. We also present preliminary data suggesting that innate immunity is radioprotective during Drosophila development. Together our data suggest that activation of the innate immune response may be beneficial initially for survival following radiation exposure but result in long-term deleterious consequences, with chronic inflammation leading to impaired neuronal function and viability at later stages. This work lays the foundation for future studies of how the innate immune response is triggered by radiation exposure and its role in mediating the biological responses to radiation. These studies may facilitate the development of strategies to reduce the deleterious side effects of CRT.


Assuntos
Drosophila melanogaster/genética , Imunidade Inata , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Drosophila melanogaster/efeitos da radiação , Larva/efeitos da radiação , NF-kappa B/genética , NF-kappa B/metabolismo , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa