Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 22(12): 762-771, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828673

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs). METHODS: MSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs. RESULTS: MSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions. CONCLUSIONS: LPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Imunidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Neovascularização Fisiológica , Pâncreas/citologia , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Humanos , Imunomodulação , Interferon gama/metabolismo , Medicina Regenerativa , Linfócitos T/citologia
2.
Exp Cell Res ; 338(2): 203-13, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26256888

RESUMO

The possibility of converting cells from blood mononuclear cells (MNC) to liver cells provides promising opportunities for the study of diseases and the assessment of new drugs. However, clinical applications have to meet GMP requirements and the methods for generating induced pluripotent cells (iPCs) have to avoid insertional mutagenesis, a possibility when using viral vehicles for the delivery of reprogramming factors. We have developed an efficient non-integration method for reprogramming fresh or frozen blood MNC, maintained in an optimised cytokine cocktail, to generate induced pluripotent cells. Using electroporation for the effective delivery of episomal transcription factors (Oct4, Sox2, Klf4, L-Myc, and Lin28) in a feeder-free system, without any requirement for small molecules, we achieved a reprogramming efficiency of up to 0.033% (65 colonies from 2×10(5) seeded MNC). Applying the same cytokine cocktail and reprogramming methods to cord blood or fetal liver-derived CD34(+) cells, we obtained 148 iPS colonies from 10(5) seeding cells (0.148%). The iPS cell lines we generated maintained typical characteristics of pluripotent cells and could be successfully differentiated into hepatocytes with drug metabolic function.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Sangue Fetal/fisiologia , Hepatócitos/fisiologia , Leucócitos Mononucleares/fisiologia , Plasmídeos/metabolismo , Antígenos CD34/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular , Citocinas/metabolismo , Sangue Fetal/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fator 4 Semelhante a Kruppel , Leucócitos Mononucleares/metabolismo , Fatores de Transcrição/metabolismo
3.
Stem Cells ; 31(2): 338-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165527

RESUMO

A decade of research has sought to identify circulating endothelial progenitor cells (EPC) in order to harness their potential for cardiovascular regeneration. Endothelial outgrowth cells (EOC) most closely fulfil the criteria for an EPC, but their origin remains obscure. Our aim was to identify the source and precursor of EOC and to assess their regenerative potential compared to mature endothelial cells. EOC are readily isolated from umbilical cord blood (6/6 donors) and peripheral blood mononuclear cells (4/6 donors) but not from bone marrow (0/6) or peripheral blood following mobilization with granulocyte-colony stimulating factor (0/6 donors). Enrichment and depletion of blood mononuclear cells demonstrated that EOC are confined to the CD34(+)CD133(-)CD146(+) cell fraction. EOC derived from blood mononuclear cells are indistinguishable from mature human umbilical vein endothelial cells (HUVEC) by morphology, surface antigen expression, immunohistochemistry, real-time polymerase chain reaction, proliferation, and functional assessments. In a subcutaneous sponge model of angiogenesis, both EOC and HUVEC contribute to de novo blood vessel formation giving rise to a similar number of vessels (7.0 ± 2.7 vs. 6.6 ± 3.7 vessels, respectively, n = 9). Bone marrow-derived outgrowth cells isolated under the same conditions expressed mesenchymal markers rather than endothelial cell markers and did not contribute to blood vessels in vivo. In this article, we confirm that EOC arise from CD34(+)CD133(-)CD146(+) mononuclear cells and are similar, if not identical, to mature endothelial cells. Our findings suggest that EOC do not arise from bone marrow and challenge the concept of a bone marrow-derived circulating precursor for endothelial cells.


Assuntos
Células Endoteliais/citologia , Sangue Fetal/citologia , Leucócitos Mononucleares/citologia , Pele/irrigação sanguínea , Antígenos CD/genética , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Células Cultivadas , Células Endoteliais/metabolismo , Sangue Fetal/metabolismo , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Imunofenotipagem , Leucócitos Mononucleares/metabolismo , Neovascularização Fisiológica , Pele/citologia , Técnicas de Cultura de Tecidos
4.
FASEB J ; 27(4): 1519-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303209

RESUMO

11ß-Hydroxysteroid dehydrogenase type-1 (11ß-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11ß-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11ß-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11ß-HSD1 inhibitor or crossed with 11ß-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11ß-HSD1 inhibition or deficiency attenuated atherosclerosis (74-76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T-cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein-1 (MCP-1) and 36% lower lesional vascular cell adhesion molecule-1 (VCAM-1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE-KO mice reduced atherosclerosis by 51%. 11ß-HSD1-null macrophages show 76% enhanced cholesterol ester export. Thus, 11ß-HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11ß-HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/deficiência , Aterosclerose/metabolismo , Medula Óssea/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Aterosclerose/genética , Medula Óssea/efeitos dos fármacos , Glucocorticoides/metabolismo , Camundongos , Camundongos Knockout , Fatores de Risco , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
PLoS Genet ; 7(12): e1002404, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22216009

RESUMO

There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover.


Assuntos
Glomerulonefrite/genética , Homeostase/genética , Insuficiência de Múltiplos Órgãos/genética , Proteínas WT1/fisiologia , Animais , Atrofia/genética , Atrofia/patologia , Linhagem da Célula/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Glomerulonefrite/patologia , Gônadas/embriologia , Gônadas/metabolismo , Gônadas/patologia , Hematopoese/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Glomérulos Renais/embriologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Insuficiência de Múltiplos Órgãos/patologia , Pâncreas Exócrino/embriologia , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Podócitos/metabolismo , Podócitos/patologia , Baço/embriologia , Baço/metabolismo , Baço/patologia , Tamoxifeno/farmacologia , Proteínas WT1/genética
6.
Antioxidants (Basel) ; 12(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237872

RESUMO

Pulmonary hypertension (PH) is a progressive disease characterized by elevated artery pressures and pulmonary vascular resistance. Underlying mechanisms comprise endothelial dysfunction, pulmonary artery remodeling and vasoconstriction. Several studies have shown evidence of the critical role of oxidative stress in PH pathophysiology. Alteration of redox homeostasis produces excessive generation of reactive oxygen species, inducing oxidative stress and the subsequent alteration of biological molecules. Exacerbations in oxidative stress production can lead to alterations in nitric oxide signaling pathways, contributing to the proliferation of pulmonary arterial endothelial cells and smooth muscle cells, inducing PH development. Recently, antioxidant therapy has been suggested as a novel therapeutic strategy for PH pathology. However, the favorable outcomes observed in preclinical studies have not been consistently reproduced in clinical practice. Therefore, targeting oxidative stress as a therapeutic intervention for PH is an area that is still being explored. This review summarizes the contribution of oxidative stress to the pathogenesis of the different types of PH and suggests antioxidant therapy as a promising strategy for PH treatment.

7.
J Clin Med ; 12(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373688

RESUMO

The gut-liver axis is defined by dietary and environmental communication between the gut, microbiome and the liver with its redox and immune systems, the overactivation of which can lead to hepatic injury. We used media preconditioning to mimic some aspects of the enterohepatic circulation by treating the human Caco-2 intestinal epithelial cell line with 5, 10 and 20 mM paracetamol (N-acetyl-para-aminophenol; APAP) for 24 h, after which cell culture supernatants were transferred to differentiated human hepatic HepaRG cells for a further 24 h. Cell viability was assessed by mitochondrial function and ATP production, while membrane integrity was monitored by cellular-based impedance. Metabolism by Caco-2 cells was determined by liquid chromatography with tandem mass spectrometry. Caco-2 cell viability was not affected by APAP, while cell membrane integrity and tight junctions were maintained and became tighter with increasing APAP concentrations, suggesting a reduction in the permeability of the intestinal epithelium. During 24 h incubation, Caco-2 cells metabolised 64-68% of APAP, leaving 32-36% of intact starting compound to be transferred to HepaRG cells. When cultured with Caco-2-preconditioned medium, HepaRG cells also showed no loss of cell viability or membrane integrity, completely in contrast to direct treatment with APAP, which resulted in a rapid loss of cell viability and membrane integrity and, ultimately, cell death. Thus, the pre-metabolism of APAP could mitigate previously observed hepatotoxicity to hepatic tight junctions caused by direct exposure to APAP. These observations could have important implications for the direct exposure of hepatic parenchyma to APAP, administered via the intravenous route.

8.
J Pathol ; 223(5): 635-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21341268

RESUMO

Susceptibility to prion infection involves interplay between the prion strain and host genetics, but expression of the host-encoded cellular prion protein is a known prerequisite. Here we consider human embryonic stem cell (hESC) susceptibility by characterizing the genetics and expression of the normal cellular prion protein and by examining their response to acute prion exposure. Seven hESC lines were tested for their prion protein gene codon 129 genotype and this was found to broadly reflect that of the normal population. hESCs expressed prion protein mRNA, but only low levels of prion protein accumulated in self-renewing populations. Following undirected differentiation, up-regulation of prion protein expression occurred in each of the major embryonic lineages. Self-renewing populations of hESCs were challenged with infectious human and animal prions. The exposed cells rapidly and extensively took up this material, but when the infectious source was removed the level and extent of intracellular disease-associated prion protein fell rapidly. In the absence of a sufficiently sensitive test for prions to screen therapeutic cells, and given the continued use of poorly characterized human and animal bioproducts during hESC derivation and cultivation, the finding that hESCs rapidly take up and process abnormal prion protein is provocative and merits further investigation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Príons/biossíntese , Animais , Bovinos , Diferenciação Celular/fisiologia , Células Cultivadas , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/transmissão , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/transmissão , Humanos , Polimorfismo Genético , Proteínas Priônicas , Príons/genética , Príons/patogenicidade , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Regulação para Cima/fisiologia
9.
Hepatology ; 51(1): 329-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19877180

RESUMO

UNLABELLED: With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation to a defined lineage, such as hepatic endoderm (HE), iPSCs would revolutionize the way we study human liver biology and generate efficient "off the shelf" models of human liver disease. Here, we show the "proof of concept" that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70%-90%, using a method mimicking physiological relevant condition. The iPSC-derived HE exhibited hepatic morphology and expressed the hepatic markers albumin and E-cadherin, as assessed by immunohistochemistry. They also expressed alpha-fetoprotein, hepatocyte nuclear factor-4a, and a metabolic marker, cytochrome P450 7A1 (Cyp7A1), demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin, and alpha-fetoprotein, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and CYP3A4 metabolism, which is essential for drug and toxicology testing. CONCLUSION: This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSCs that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSCs from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionize predictive drug toxicology assays and allow the creation of in vitro hepatic disease models.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Linhagem da Célula , Feminino , Humanos , Masculino
10.
Liver Int ; 31(2): 254-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21143581

RESUMO

BACKGROUND: Human embryonic stem cells (hESCs) can be efficiently differentiated to hepatocyte-like cells (HLCs) in vitro and demonstrate many of the functions and gene expression found in the adult liver. AIMS: In this study, we assess the therapeutic value of HLCs in long-term cell-based therapies in vivo. METHODS: hESC-derived HLCs were injected into the spleen of acutely injured NODscid(IL-2Rγ) null mice and analysed at various time points post-transplantation up to 3 months. RESULTS: Large clusters of human cells engrafted in the spleen after 3 days and had expanded considerably by 31 days. At these time points, we identified human cells expressing parenchymal hepatocyte markers, exhibiting biliary duct-like structures and expressing myofibroblast markers. Three months after transplantation, we could detect human HLCs that were positive for albumin and CK18 by immunostaining and human DNA by fluorescent in situ hybridisation. Moreover, we could detect secretion of human serum albumin by enzyme-linked immunoabsorbant assay. CONCLUSIONS: We observed the persistence, engraftment and function of HLCs in vivo up to 3 months post-translation; however, all murine recipients developed large splenic and liver tumours that contained endodermal and mesodermal cell types. Although our studies demonstrate that hESC-derived HLCs have the potential to play an important role in cell-based therapies, current methodologies and transplantation strategies require substantial refinement before they can be deployed safely.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Baço/citologia , Animais , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Albumina Sérica/análise , Transplante de Células-Tronco
11.
Exp Cell Res ; 316(9): 1637-47, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20211168

RESUMO

Future treatments for chronic liver disease are likely to involve manipulation of liver progenitor cells (LPCs). In the human, data characterising the regenerative response is limited and the origin of adult LPCs is unknown. However, these remain critical factors in the design of cell-based liver therapies. The developing human liver provides an ideal model to study cell lineage derivation from progenitors and to understand how foetal haematopoiesis and liver development might explain the nature of the adult LPC population. In 1st trimester human liver, portal venous endothelium (PVE) expressed adult LPC markers and markers of haematopoietic progenitor cells (HPCs) shared with haemogenic endothelium found in the embryonic dorsal aorta. Sorted PVE cells were able to generate hepatoblast-like cells co-expressing CK18 and CK19 in addition to Dlk/pref-1, E-cadherin, albumin and fibrinogen in vitro. Furthermore, PVE cells could initiate haematopoiesis. These data suggest that PVE shares phenotypical and functional similarities both with adult LPCs and embryonic haemogenic endothelium. This indicates that a temporal relationship might exist between progenitor cells in foetal liver development and adult liver regeneration, which may involve progeny of PVE.


Assuntos
Endotélio Vascular/citologia , Células Epiteliais/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Fígado/embriologia , Veia Porta/citologia , Células-Tronco/fisiologia , Biomarcadores/metabolismo , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Endotélio Vascular/fisiologia , Feminino , Feto/metabolismo , Imunofluorescência , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Fígado/fisiologia , Fenótipo , Veia Porta/fisiologia , Gravidez , Primeiro Trimestre da Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Proc Natl Acad Sci U S A ; 105(34): 12301-6, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18719101

RESUMO

Human embryonic stem cells (hESCs) are a valuable source of pluripotential primary cells. To date, however, their homogeneous cellular differentiation to specific cell types in vitro has proven difficult. Wnt signaling has been shown to play important roles in coordinating development, and we demonstrate that Wnt3a is differentially expressed at critical stages of human liver development in vivo. The essential role of Wnt3a in hepatocyte differentiation from hESCs is paralleled by our in vitro model, demonstrating the importance of a physiologic approach to cellular differentiation. Our studies provide compelling evidence that Wnt3a signaling is important for coordinated hepatocellular function in vitro and in vivo. In addition, we demonstrate that Wnt3a facilitates clonal plating of hESCs exhibiting functional hepatic differentiation. These studies represent an important step toward the use of hESC-derived hepatocytes in high-throughput metabolic analysis of human liver function.


Assuntos
Ativinas/fisiologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Endoderma/citologia , Fígado/crescimento & desenvolvimento , Proteínas Wnt/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/transplante , Humanos , Fígado/citologia , Camundongos , Camundongos SCID , Baço/citologia , Transplante Heterólogo , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
13.
Gut ; 59(5): 645-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20427399

RESUMO

BACKGROUND: Stem/progenitor cell niches in tissues regulate stem/progenitor cell differentiation and proliferation through local signalling. OBJECTIVE: To examine the composition and formation of stem progenitor cell niches. METHODS: The composition of the hepatic progenitor cell niche in independent models of liver injury and hepatic progenitor cell activation in rodents and humans was studied. To identify the origin of the progenitor and niche cells, sex-mismatched bone marrow transplants in mice, who had received the choline-ethionine-deficient-diet to induce liver injury and progenitor cell activation, were used. The matrix surrounding the progenitor cells was described by immunohistochemical staining and its functional role controlling progenitor cell behaviour was studied in cell culture experiments using different matrix layers. RESULTS: The progenitor cell response in liver injury is intimately surrounded by myofibroblasts and macrophages, and to a lesser extent by endothelial cells. Hepatic progenitor cells are not of bone marrow origin; however, bone marrow-derived cells associate intimately with these cells and are macrophages. Laminin always surrounds the progenitor cells. In vitro studies showed that laminin aids maintenance of progenitor and biliary cell phenotype and promotes their gene expression (Dlk1, Aquaporin 1, gammaGT) while inhibiting hepatocyte differentiation and gene expression (CEPB/alpha). CONCLUSIONS: During liver damage in rodents and humans a stereotypical cellular and laminin niche forms around hepatic progenitor cells. Laminin helps maintenance of undifferentiated progenitor cells. The niche links the intrahepatic progenitor cells with bone marrow-derived cells and links tissue damage with progenitor cell-mediated tissue repair.


Assuntos
Hepatócitos/patologia , Hepatopatias/patologia , Células-Tronco/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Matriz Extracelular/fisiologia , Feminino , Hepatite C Crônica/patologia , Humanos , Laminina/análise , Laminina/fisiologia , Fígado/química , Hepatopatias/metabolismo , Regeneração Hepática/fisiologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miofibroblastos/patologia , Fenótipo , Ratos , Ratos Endogâmicos F344 , Recidiva
14.
Eur J Immunol ; 39(5): 1353-60, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19404978

RESUMO

Beta-defensins comprise a family of cationic, antimicrobial and chemoattractant peptides. The six cysteine canonical motif is retained throughout evolution and the disulphide connectivities stabilise the conserved monomer structure. A murine beta-defensin gene (Defr1) present in the main defensin cluster of C57B1/6 mice, encodes a peptide with only five of the canonical six cysteine residues. In other inbred strains of mice, the allele encodes Defb8, which has the six cysteine motif. We show here that in common with six cysteine beta-defensins, defensin-related peptide 1 (Defr1) displays chemoattractant activity for CD4(+) T cells and immature DC (iDC), but not mature DC cells or neutrophils. Murine Defb2 replicates this pattern of attraction. Defb8 is also able to attract iDC but not mature DC. Synthetic analogues of Defr1 with the six cysteines restored (Defr1 Y5C) or with only a single cysteine (Defr1-1c(V)) chemoattract CD4(+) T cells with reduced activity, but do not chemoattract DC. Beta-defensins have previously been shown to attract iDC through CC receptor 6 (CCR6) but neither Defr1 or its related peptides nor Defb8, chemoattract cells overexpressing CCR6. Thus, we demonstrate that the canonical six cysteines of beta-defensins are not required for the chemoattractant activity of Defr1 and that neither Defr1 nor the six cysteine polymorphic variant allele Defb8, act through CCR6.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quimiotaxia/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Receptores CCR6/imunologia , beta-Defensinas/imunologia , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Defensinas/genética
15.
Exp Cell Res ; 315(13): 2141-53, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19233167

RESUMO

Side population (SP) cells have recently been identified in a number of tissues although their phenotype and functional abilities are poorly understood. Surface marker characterisation and functional assessment of developing liver SP cells might allow for their isolation and manipulation using clinically relevant techniques. It was hypothesised that SP cells are present early during human liver development and contribute to haematopoietic and epithelial lineage generation. Whilst the SP population remained positive for CD34 during the 1st and 2nd trimester, 1st trimester SP cells were more highly enriched for haematopoietic and epithelial progenitor activity than those from the 2nd trimester in vitro. Marker expression and functional similarities indicate that SP cells in developing human liver may share a temporal relationship with oval/progenitor cells, responsible for liver regeneration after massive or chronic hepatic injury. Furthermore, modification of SP integrin expression during development suggests a potential adaptive interaction with niche components such as fibronectin. Improved understanding of developing human liver SP cells will contribute to the generation of novel cell-based therapies for liver disease.


Assuntos
Fígado , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Ensaio de Unidades Formadoras de Colônias , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Fígado/citologia , Fígado/crescimento & desenvolvimento , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez
16.
Pathogens ; 9(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486188

RESUMO

A novel strain of coronoviridae (SARS-CoV-2) was reported in Wuhan China in December 2019. Initially, infection presented with a broad spectrum of symptoms which typically included muscle aches, fever, dry cough, and shortness of breath. SARS-CoV-2 enters cells via ACE2 receptors which are abundant throughout the respiratory tract. However, there is evidence that these receptors are abundant throughout the body, and just as abundant in cholangiocytes as alveolar cells, posing the question of possible direct liver injury. While liver enzymes and function tests do seem to be deranged in some patients, it is questionable if the injury is due to direct viral damage, drug-induced liver injury, hypoxia, or microthromboses. Likely, the injury is multifactoral, and management of infected patients with pre-existing liver disease should be taken into consideration. Ultimately, a vaccine is needed to aid in reducing cases of SARS-CoV-2 and providing immunity to the general population. However, while considering the types of vaccines available, safety concerns, particularly of RNA- or DNA-based vaccines, need to be addressed.

17.
Cells ; 9(3)2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245194

RESUMO

Gene expression analysis by quantitative real-time polymerase chain reaction (RT-qPCR) is routinely used in biomedical studies. The reproducibility and reliability of the data fundamentally depends on experimental design and data interpretation. Despite the wide application of this assay, there is significant variation in the validation process of gene expression data from research laboratories. Since the validity of results depends on appropriate normalisation, it is crucial to select appropriate reference gene(s), where transcription of the selected gene is unaffected by experimental setting. In this study we have applied geNorm technology to investigate the transcription of 12 'housekeeping' genes for use in the normalisation of RT-qPCR data acquired using a widely accepted HepaRG hepatic cell line in studies examining models of pre-clinical drug testing. geNorm data identified a number of genes unaffected by specific drug treatments and showed that different genes remained invariant in response to different drug treatments, whereas the transcription of 'classical' reference genes such as GAPDH (glyceralde- hyde-3-phosphate dehydrogenase) was altered by drug treatment. Comparing data normalised using the reference genes identified by geNorm with normalisation using classical housekeeping genes demonstrated substantial differences in the final results. In light of cell therapy application, RT-qPCR analyses has to be carefully evaluated to accurately interpret data obtained from dynamic cellular models undergoing sequential stages of phenotypic change.


Assuntos
Doença/genética , Regulação da Expressão Gênica , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Testes de Toxicidade , Acetaminofen/toxicidade , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Clorpromazina/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Essenciais , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência , Transcrição Gênica/efeitos dos fármacos
18.
Tissue Eng Part A ; 26(19-20): 1064-1076, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32292123

RESUMO

Fully differentiated HepaRG™ cells are the hepatic cell line of choice for in vitro study in toxicology and drug trials. They are derived from a hepatoblast-like progenitor (HepaRG-P) that differentiates into a coculture of hepatocyte-like and cholangiocyte-like cells. This process that requires 2 weeks of proliferation followed by 2 weeks of differentiation using dimethyl sulfoxide (DMSO) can be time consuming and costly. Identifying a method to accelerate HepaRG-Ps toward a mature lineage would save both time and money. The ability to do this in the absence of DMSO would remove the possibility of confounding toxicology results caused by DMSO induction of CYP pathways. It has been shown that tissue culture substrates play an important role in the development and maturity of a cell line, and this is particularly important for progenitor cells, which retain some form of plasticity. Oxygen plasma treatment is used extensively to modify cell culture substrates. There is also evidence that patterned rather than planar surfaces have a positive effect on proliferation and differentiation. In this study, we compared the effect of standard tissue culture plastic (TCP), oxygen plasma coated (OPC), and nanopatterned substrates (NPS) on early differentiation and function of HepaRG-P cells. Since NPS were OPC we initially compared the effect of TCP and OPC to enable comparison between all three culture surfaces using OPC as control to asses if patterning further enhanced early differentiation and functionality. The results show that HepaRG-P's grown on OPC substrate exhibited earlier differentiation, proliferation, and function compared with TCP. Culturing HepaRG-P's on OPC with the addition of NPS did not confer any additional advantage. In conclusion, OPC surface appeared to enhance hepatic differentiation and functionality and could replace traditional methods of differentiating HepaRG-P cells into fully differentiated and functional HepaRGs earlier than standard methods. Impact statement We show significantly earlier differentiation and function of HepaRG progenitor cells when grown in dimethyl sulfoxide-free medium on oxygen plasma substrates versus standard tissue culture plastic. Further investigation showed that nanopatterning of oxygen plasma substrates did not confer any additional advantage over smooth oxygen plasma, although one pattern (DSQ120) showed comparable early differentiation and function.


Assuntos
Diferenciação Celular , Hepatócitos/citologia , Oxigênio , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Gases em Plasma
19.
Sci Transl Med ; 12(526)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941825

RESUMO

Islet transplantation is an efficacious therapy for type 1 diabetes; however, islets from multiple donor pancreata are required, and a gradual attrition in transplant function is seen. Here, we manufactured human umbilical cord perivascular mesenchymal stromal cells (HUCPVCs) to Good Manufacturing Practice (GMP) standards. HUCPVCs showed a stable phenotype while undergoing rapid ex vivo expansion at passage 2 (p2) to passage 4 (p4) and produced proregenerative factors, strongly suppressing T cell responses in the resting state and in response to inflammation. Transplanting an islet equivalent (IEQ):HUCPVC ratio of 1:30 under the kidney capsule in diabetic NSG mice demonstrated the fastest return to normoglycemia by 3 days after transplant: Superior glycemic control was seen at both early (2.7 weeks) and later stages (7, 12, and 16 weeks) versus ratios of 1:0, 1:10, and 1:50, respectively. Syngeneic islet transplantation in immunocompetent mice using the clinically relevant hepatic portal route with a marginal islet mass showed that mice transplanted with an IEQ:HUCPVC ratio of 1:150 had superior glycemic control versus ratios of 1:0, 1:90, and 1:210 up to 6 weeks after transplant. Immunodeficient mice transplanted with human islets (IEQ:HUCPVC ratio of 1:150) exhibited better glycemic control for 7 weeks after transplant versus islet transplant alone, and islets transplanted via the hepatic portal vein in an allogeneic mouse model using a curative islet mass demonstrated delayed rejection of islets when cotransplanted with HUCPVCs (IEQ:HUCPVC ratio of 1:150). The immunosuppressive and proregenerative properties of HUCPVCs demonstrated long-term positive effects on graft function in vivo, indicating that they may improve long-term human islet allotransplantation outcomes.


Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Cordão Umbilical/citologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/cirurgia , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Veia Porta/metabolismo
20.
J Clin Med ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878354

RESUMO

There are a variety of end-point assays and techniques available to monitor hepatic cell cultures and study toxicity within in vitro models. These commonly focus on one aspect of cell metabolism and are often destructive to cells. Impedance-based cellular assays (IBCAs) assess biological functions of cell populations in real-time by measuring electrical impedance, which is the resistance to alternating current caused by the dielectric properties of proliferating of cells. While the uses of IBCA have been widely reported for a number of tissues, specific uses in the study of hepatic cell cultures have not been reported to date. IBCA monitors cellular behaviour throughout experimentation non-invasively without labelling or damage to cell cultures. The data extrapolated from IBCA can be correlated to biological events happening within the cell and therefore may inform drug toxicity studies or other applications within hepatic research. Because tight junctions comprise the blood/biliary barrier in hepatocytes, there are major consequences when these junctions are disrupted, as many pathologies centre around the bile canaliculi and flow of bile out of the liver. The application of IBCA in hepatology provides a unique opportunity to assess cellular polarity and patency of tight junctions, vital to maintaining normal hepatic function. Here, we describe how IBCAs have been applied to measuring the effect of viral infection, drug toxicity /IC50, cholangiopathies, cancer metastasis and monitoring of the gut-liver axis. We also highlight key areas of research where IBCAs could be used in future applications within the field of hepatology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa