Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L65-L78, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651968

RESUMO

Perimenstrual worsening of asthma occurs in up to 40% of women with asthma, leading to increased acute exacerbations requiring clinical care. The role of sex hormones during these times remains unclear. In the current study, we used a translational approach to determine whether progesterone exacerbates allergic inflammation in the traditional chicken egg ovalbumin (OVA) model in BALB/c mice. Simultaneously, we used peripheral blood mononuclear cells (PBMC) from healthy human donors to assess the effects of progesterone on circulating group 2 innate lymphoid cells (ILC2). Briefly, lungs of ovariectomized (OVX) or sham-operated female (F-Sham) controls were implanted with a progesterone (P4, 25 mg) (OVX-P4) or placebo pellet (OVX-Placebo), followed by sensitization and challenge with ovalbumin (OVA). Progesterone increased total inflammatory histologic scores, increased hyper-responsiveness to methacholine (MCh), increased select chemokines in the bronchoalveolar lavage (BAL) and serum, and increased ILC2 and neutrophil numbers, along the airways compared with F-Sham-OVA and OVX-Placebo-OVA animals. Lung ILC2 were sorted from F-Sham-OVA, OVX-Placebo-OVA and OVX-P4-OVA treated animals and stimulated with IL-33. OVX-P4-OVA lung ILC2 were more responsive to interleukin 33 (IL-33) compared with F-Sham-OVA treated, producing more IL-13 and chemokines following IL-33 stimulation. We confirmed the expression of the progesterone receptor (PR) on human ILC2, and showed that P4 + IL-33 stimulation also increased IL-13 and chemokine production from human ILC2. We establish that murine ILC2 are capable of responding to P4 and thereby contribute to allergic inflammation in the lung. We confirmed that human ILC2 are also hyper-responsive to P4 and IL-33 and likely contribute to airway exacerbations following allergen exposures in asthmatic women with increased symptoms around the time of menstruation.NEW & NOTEWORTHY There is a strong association between female biological sex and severe asthma. We investigated the allergic immune response, lung pathology, and airway mechanics in the well-described chicken egg ovalbumin (OVA) model with steady levels of progesterone delivered throughout the treatment period. We found that progesterone enhances the activation of mouse group 2 innate lymphoid cells (ILC2). Human ILC2 are also hyper-responsive to progesterone and interleukin 33 (IL-33), and likely contribute to airway exacerbations following allergen exposures in women with asthma.


Assuntos
Asma , Pulmão , Linfócitos , Camundongos Endogâmicos BALB C , Ovalbumina , Progesterona , Progesterona/farmacologia , Animais , Feminino , Linfócitos/imunologia , Linfócitos/metabolismo , Humanos , Asma/imunologia , Asma/patologia , Asma/metabolismo , Camundongos , Ovalbumina/imunologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Imunidade Inata/efeitos dos fármacos , Interleucina-33/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Hipersensibilidade/metabolismo , Inflamação/patologia , Inflamação/imunologia , Inflamação/metabolismo , Modelos Animais de Doenças
2.
Am J Physiol Endocrinol Metab ; 321(1): E80-E89, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121449

RESUMO

Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, (P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (∼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Nicotiana , Fumaça/efeitos adversos , Animais , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Enfisema/patologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Estresse Oxidativo , Consumo de Oxigênio , Músculo Quadríceps/ultraestrutura , Comportamento Sedentário
3.
Free Radic Biol Med ; 195: 261-269, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586455

RESUMO

The mechanisms underlying muscle dysfunction with Chronic Obstructive Pulmonary Disease (COPD) are poorly understood. Indirect evidence has recently suggested a role of Advanced Glycation End Products (AGEs) and their receptor (RAGE) in the pathophysiology of COPD. Accordingly, this study aimed to examine the redox balance and mitochondrial alterations in the skeletal muscle of a mouse model deficient in the receptor for AGE (RAGE-KO) and wild-type C57BL/6 exposed to cigarette smoke for 8-months using immunoblotting, spectrophotometry, and high-resolution respirometry. Cigarette smoke exposure increased by two-fold 4-HNE levels (P < 0.001), a marker of oxidative stress, and markedly downregulated contractile proteins, mitochondrial respiratory complexes, and uncoupling proteins levels (P < 0.001). Functional alterations with cigarette smoke exposure included a greater reliance on complex-I supported respiration (P < 0.01) and lower relative respiratory capacity for fatty acid (P < 0.05). RAGE knockout resulted in 47% lower 4-HNE protein levels than the corresponding WT control mice exposed to cigarette smoke (P < 0.05), which was partly attributed to increased Complex III protein levels. Independent of cigarette smoke exposure, RAGE KO decreased mitochondrial specific maximal respiration (P < 0.05), resulting in a compensatory increase in mitochondrial content measured by citrate synthase activity (P < 0.001) such that muscle respiratory capacity remained unaltered. Together, these findings suggest that knockout of RAGE protected the skeletal muscle against oxidative damage induced by 8 months of cigarette smoke exposure. In addition, this study supports a role for RAGE in regulating mitochondrial content and function and can thus serve as a potential therapeutic target.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada , Fumar Cigarros/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Produtos Finais de Glicação Avançada/genética , Produtos Finais de Glicação Avançada/metabolismo
4.
Sci Rep ; 9(1): 231, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659203

RESUMO

The receptor for advanced glycation end products (RAGE), a cell membrane receptor, recognizes ligands produced by cigarette smoke (CS) and has been implicated in the pathogenesis of COPD. We demonstrate that deletion or pharmacologic inhibition of RAGE prevents development of CS-induced emphysema. To identify molecular pathways by which RAGE mediates smoking related lung injury we performed unbiased gene expression profiling of alveolar macrophages (AM) obtained from RAGE null and C57BL/6 WT mice exposed to CS for one week or four months. Pathway analysis of RNA expression identified a number of genes integral to the pathogenesis of COPD impacted by the absence of RAGE. Altered expression of antioxidant response genes and lung protein 4-HNE immunostaining suggest attenuated oxidative stress in the RAGE null mice despite comparable CS exposure and lung leukocyte burden as the WT mice. Reduced endoplasmic reticulum stress in response to CS exposure also was observed in the AM from RAGE null mice. These findings provide novel insight into the sources of oxidative stress, macrophage activation, and the pathogenesis of lung disease due to CS exposure.


Assuntos
Fumar Cigarros/efeitos adversos , Enfisema/fisiopatologia , Pulmão/patologia , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Estresse Oxidativo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada/deficiência , Fumaça/efeitos adversos
5.
Antioxid Redox Signal ; 5(6): 751-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14588148

RESUMO

Reactive oxygen species generated from NADPH oxidase(s) in airway smooth muscle cells and pulmonary artery smooth muscle cells are important signaling intermediates. Nox4 appears to be the predominant gp91 homologue in these cells. However, expression of NADPH oxidase components is dependent on phenotype, and different homologues may be expressed during different functional states of the cell. NADPH oxidase(s) appear to be important not only for mitogenesis by these cells, but also for O(2) sensing. The regulation of NADPH oxidase(s) in airway and pulmonary artery smooth muscle cells has important implications for the pathobiochemistry of asthma and pulmonary vascular diseases.


Assuntos
Músculo Liso Vascular/citologia , NADPH Oxidases/fisiologia , Animais , Divisão Celular , Humanos , Glicoproteínas de Membrana/metabolismo , Modelos Químicos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Oxigênio/metabolismo , Fenótipo , Espécies Reativas de Oxigênio , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa