Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(35): 16093-16100, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36007228

RESUMO

Two-dimensional covalent organic frameworks (2D COFs) feature graphene-type 2D layered sheets but with a tunable structure, electroactivity, and high porosity. If these traits are well-combined, then 2D COFs can be applied in electronics to realize functions with a high degree of complexity. Here, a highly crystalline electroactive COF, BDFamide-Tp, was designed and synthesized. It shows regularly distributed pores with a width of 1.35 nm. Smooth and successive films of such a COF were fabricated and found to be able to increase the conductivity of an organic semiconductor by 103 by interfacial doping. Upon encapsulation of a photoswitchable molecule (spiropyran) into the voids of the COF layer, the resulted devices respond differently to light of different wavelengths. Specifically, the current output ratio after UV vs Vis illumination reaches 100 times, thus effectively creating on and off states. The respective positive and negative feedbacks are memorized by the device and can be reprogrammed by UV/Vis illumination. The reversible photostimulus responsivity and reliable memory of the device are derived from the combination of electroactivity and porosity of the 2D COF. This work shows the capability of 2D COFs in higher-level electronic functions and extends their possible applications in information storage.

2.
Nanoscale ; 15(28): 12123, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432666

RESUMO

Correction for 'Secondary ligand-induced orthogonal self-assembly of silver nanoclusters into superstructures with enhanced NIR emission' by Korath Shivan Sugi, et al., Nanoscale, 2023, https://doi.org/10.1039/d3nr02561f.

3.
Nanoscale ; 15(28): 11927-11934, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37381785

RESUMO

Orthogonal self-assembly is one of the crucial strategies for forming complex and hierarchical structures in biological systems. However, creating such ordered complex structures using synthetic nanoparticles is a challenging task and requires a high degree of control over structure and multiple non-covalent interactions. In this context, nanoarchitectonics serves as an emerging tool to fabricate complex functional materials. Here, we present a secondary ligand-induced orthogonal self-assembly of atomically precise silver nanoclusters into complex superstructures. Specifically, we use Ag14NCs protected with naphthalene thiol and 1,6-bis(diphenylphosphino)hexane ligands. Controlled addition of 1,6-bis(diphenylphosphino)hexane, the secondary ligand resulted in a self-assembled supracolloidal structure including helical fibers, spheres, and nanosheets. The self-assembly process is tunable by controlling the molar ratio of the ligand. The resulting superstructures exhibit enhanced NIR emission due to restricted intramolecular motion. This demonstrates that by tuning supramolecular interactions, hierarchical nanostructures with desired properties similar to biomolecules can be obtained from atomically precise building blocks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa