Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Proc Natl Acad Sci U S A ; 117(47): 29720-29729, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33139533

RESUMO

Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.


Assuntos
Secas/mortalidade , Florestas , Biodiversidade , Mudança Climática/mortalidade , Ecossistema , Especificidade da Espécie , Árvores/fisiologia
3.
Ecol Appl ; 32(5): e2589, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333426

RESUMO

Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981-2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.


Assuntos
Magnoliopsida , Árvores , Mudança Climática , Secas , Florestas
4.
Glob Chang Biol ; 27(9): 1879-1889, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508887

RESUMO

Climate warming is expected to positively alter upward and poleward treelines which are controlled by low temperature and a short growing season. Despite the importance of treelines as a bioassay of climate change, a global field assessment and posterior forecasting of tree growth at annual scales is lacking. Using annually resolved tree-ring data located across Eurasia and the Americas, we quantified and modeled the relationship between temperature and radial growth at treeline during the 20th century. We then tested whether this temperature-growth association will remain stable during the 21st century using a forward model under two climate scenarios (RCP 4.5 and 8.5). During the 20th century, growth enhancements were common in most sites, and temperature and growth showed positive trends. Interestingly, the relationship between temperature and growth trends was contingent on tree age suggesting biogeographic patterns in treeline growth are contingent on local factors besides climate warming. Simulations forecast temperature-growth decoupling during the 21st century. The growing season at treeline is projected to lengthen and growth rates would increase and become less dependent on temperature rise. These forecasts illustrate how growth may decouple from climate warming in cold regions and near the margins of tree existence. Such projected temperature-growth decoupling could impact ecosystem processes in mountain and polar biomes, with feedbacks on climate warming.


Assuntos
Ecossistema , Árvores , Mudança Climática , Temperatura Baixa , Temperatura
5.
Ecol Appl ; 31(3): e02288, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33423382

RESUMO

Climate warming is driving an advance of leaf unfolding date in temperate deciduous forests, promoting longer growing seasons and higher carbon gains. However, an earlier leaf phenology also increases the risk of late frost defoliation (LFD) events. Compiling the spatiotemporal patterns of defoliations caused by spring frost events is critical to unveil whether the balance between the current advance in leaf unfolding dates and the frequency of LFD occurrence is changing and represents a threaten for the future viability and persistence of deciduous forests. We combined satellite imagery with machine learning techniques to reconstruct the spatiotemporal patterns of LFD events for the 2003-2018 period in the Iberian range of European beech (Fagus sylvatica), at the drier distribution edge of the species. We used MODIS Vegetation Index Products to generate a Normalized Difference Vegetation Index (NDVI) time series for each 250 × 250 m pixel in a total area of 1,013 km2 (16,218 pixels). A semi-supervised approach was used to train a machine learning model, in which a binary classifier called Support Vector Machine with Global Alignment Kernel was used to differentiate between late frost and non-late frost pixels. We verified the obtained estimates with photointerpretation and existing beech tree-ring chronologies to iteratively improve the model. Then, we used the model output to identify topographical and climatic factors that determined the spatial incidence of LFD. During the study period, LFD was a low recurrence phenomenon that occurred every 15.2 yr on average and showed high spatiotemporal heterogeneity. Most LFD events were condensed in 5 yr and clustered in western forests (86.5% in one-fifth of the pixels) located at high elevation with lower than average precipitation. Elevation and longitude were the major LFD risk factors, followed by annual precipitation. The synergistic effects of increasing drought intensity and rising temperature combined with more frequent late frost events may determine the future performance and distribution of beech forests. This interaction might be critical at the beech drier range edge, where the concentration of LFD at high elevations could constrain beech altitudinal shifts and/or favor species with higher resistance to late frosts.


Assuntos
Fagus , Mudança Climática , Florestas , Incidência , Aprendizado de Máquina , Estações do Ano , Árvores
6.
Glob Chang Biol ; 26(9): 4988-4997, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32574409

RESUMO

Long-term tree recruitment dynamics of subalpine forests mainly depend on temperature changes, but little is known about the feedbacks between historical land use and climate. Here, we analyze a southern European, millennium-long dataset of tree recruitment from three high-elevation pine forests located in Mediterranean mountains (Pyrenees, northeastern Spain; Pollino, southern Italy; and Mt. Smolikas, northern Greece). We identify synchronized recruitment peaks in the late 15th and early 16th centuries, following prolonged periods of societal and climate instability. Major European population crises in the 14th and 15th centuries associated with recurrent famines, the Black Death pandemic, and political turmoil are likely to have reduced the deforestation of subalpine environments and caused widespread rewilding. We suggest that a distinct cold phase in the Little Ice Age around 1450 ce could also have accelerated the cessation of grazing pressure, particularly in the Pyrenees, where the demographic crisis was less severe. Most pronounced in the Pyrenees, the enhanced pine recruitment from around 1500-1550 ce coincides with temporarily warmer temperatures associated with a positive phase of the North Atlantic Oscillation. We diagnose that a mixture of human and climate factors has influenced past forest recruitment dynamics in Mediterranean subalpine ecosystems. Our results highlight how complex human-climate interactions shaped forest dynamics during pre-industrial times and provide historical analogies to recent rewilding.


Assuntos
Ecossistema , Pinus , Clima , Mudança Climática , Florestas , Humanos , Itália , Espanha , Árvores
7.
Glob Chang Biol ; 24(5): 2143-2158, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29488293

RESUMO

Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.


Assuntos
Cycadopsida/fisiologia , Secas , Florestas , Magnoliopsida/fisiologia , Região do Mediterrâneo , Espanha , Fatores de Tempo
8.
Glob Chang Biol ; 23(7): 2705-2719, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27782362

RESUMO

Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Clima , Secas , Modelos Teóricos , Espanha
9.
Glob Chang Biol ; 23(4): 1675-1690, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27759919

RESUMO

Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.


Assuntos
Besouros , Secas , Árvores/crescimento & desenvolvimento , Animais , Carbono , Estresse Fisiológico
10.
Glob Chang Biol ; 22(6): 2125-37, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26790660

RESUMO

Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback.


Assuntos
Abies/fisiologia , Isótopos de Carbono/análise , Secas , Pinus sylvestris/fisiologia , Água/fisiologia , Madeira/anatomia & histologia , Modelos Lineares , Modelos Biológicos , Estações do Ano , Espanha , Xilema/fisiologia
11.
Glob Chang Biol ; 21(2): 738-49, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25362899

RESUMO

Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (c(a)) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold-limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high-elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased c(a) by focusing on region- and age-dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing-season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151-300 year-old trees) and old-mature trees (301-450 year-old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated c(a) on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought-prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming-triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising c(a) on forest growth.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Florestas , Pinus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Secas , Aquecimento Global , Espanha , Temperatura
12.
Ann Bot ; 116(6): 917-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26292992

RESUMO

BACKGROUND AND AIMS: Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). METHODS: A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. KEY RESULTS: The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. CONCLUSIONS: The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios.


Assuntos
Mudança Climática , Pinus sylvestris/crescimento & desenvolvimento , Secas , Europa (Continente) , Estações do Ano , Espanha , Árvores
13.
Front Plant Sci ; 14: 1327163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259935

RESUMO

Forests are critical in the terrestrial carbon cycle, and the knowledge of their response to ongoing climate change will be crucial for determining future carbon fluxes and climate trajectories. In areas with contrasting seasons, trees form discrete annual rings that can be assigned to calendar years, allowing to extract valuable information about how trees respond to the environment. The anatomical structure of wood provides highly-resolved information about the reaction and adaptation of trees to climate. Quantitative wood anatomy helps to retrieve this information by measuring wood at the cellular level using high-resolution images of wood micro-sections. However, whereas large advances have been made in identifying cellular structures, obtaining meaningful cellular information is still hampered by the correct annual tree ring delimitation on the images. This is a time-consuming task that requires experienced operators to manually delimit ring boundaries. Classic methods of automatic segmentation based on pixel values are being replaced by new approaches using neural networks which are capable of distinguishing structures, even when demarcations require a high level of expertise. Although neural networks have been used for tree ring segmentation on macroscopic images of wood, the complexity of cell patterns in stained microsections of broadleaved species requires adaptive models to accurately accomplish this task. We present an automatic tree ring boundary delineation using neural networks on stained cross-sectional microsection images from beech cores. We trained a UNETR, a combined neural network of UNET and the attention mechanisms of Visual Transformers, to automatically segment annual ring boundaries. Its accuracy was evaluated considering discrepancies with manual segmentation and the consequences of disparity for the goals of quantitative wood anatomy analyses. In most cases (91.8%), automatic segmentation matched or improved manual segmentation, and the rate of vessels assignment to annual rings was similar between the two categories, even when manual segmentation was considered better. The application of convolutional neural networks-based models outperforms human operator segmentations when confronting ring boundary delimitation using specific parameters for quantitative wood anatomy analysis. Current advances on segmentation models may reduce the cost of massive and accurate data collection for quantitative wood anatomy.

14.
Ecosystems ; 25(1): 215-235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210936

RESUMO

Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25-50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10021-021-00650-8.

15.
Sci Total Environ ; 765: 142752, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33082041

RESUMO

Understanding how climate warming and land-use changes determine the vulnerability of forests to drought is critical. However, we still lack: (i) robust quantifications of long-term growth changes during aridification processes, (ii) links between growth decline, changes in forest cover, stand structure and soil conditions, and (iii) forecasts of growth variability to projected climate warming. We investigated tree-ring records over the past 400-700 years, quantified changes in grazing area and forest cover during the 20th century, sampled current stand structure, and analyzed soil organic carbon δ13C and total nitrogen δ15N of Atlas cedar (Cedrus atlantica (Endl.) Manetti ex Carrière) Moroccan forests to characterize their dieback. Atlas cedar forests experienced massive dieback after the 1970s, particularly in the xeric High Atlas region. Forest cover increased in the less xeric regions (Middle Atlas and Rif) by almost 20%, while it decreased about 18% in the High Atlas, where soil δ13C and δ15N showed evidences of grazing. Growth declined and became more variable in response to recent droughts. The relative growth reduction (54%) was higher in the Middle Atlas than elsewhere (Rif, 32%; High Atlas, 36%). Growth synchrony between forests located within the Middle and High Atlas regions increased after the 1970s. Simulations based on a worst-case emission scenario and rapid warming forecast a stronger limitation of growth by low soil moisture in all regions, but particularly in the Middle Atlas and after the mid-21st century. Climate warming is expected to strengthen growth synchronization preceding dieback of conifer forests in xeric regions. The likelihood of similar dieback episodes is further exacerbated by historical degradation of these forests.


Assuntos
Carbono , Secas , Animais , Mudança Climática , Florestas , Cabras , Solo , Árvores
16.
Sci Total Environ ; 796: 148930, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34378542

RESUMO

Forests are being impacted by climate and land-use changes which have altered their productivity and growth. Understanding how tree growth responds to climate in natural and planted stands may provide valuable information to prepare management in sight of climate change. Plantations are expected to show higher sensitivity to climate and lower post-drought resilience than natural stands, due to their lower compositional and structural diversity. We reconstructed and compared the radial growth of six conifers with contrasting ecological and climatic niches (Abies pinsapo, Cedrus atlantica, Pinus sylvestris, Pinus nigra, Pinus pinea, Pinus pinaster) in natural and planted stands subjected to seasonal drought in 40 sites. We quantified the relationships between individual growth variability and climate variables (temperature, precipitation and the SPEI drought index), as well as post-drought resilience. Elevated precipitation during the previous autumn-winter and current spring to early summer enhanced growth in both natural and planted stands of all species. Temperature effects on growth were less consistent: only plantations of A. pinsapo, C. atlantica, P. nigra, P. pinea, P. sylvetris and a natural stand of P. nigra showed negative impacts of summer temperature on growth. Drought reduced growth of all species in both plantations and natural stands, with variations in the temporal scale of the response. Drought constrained growth more severely in natural stands than in plantations of C. atlantica, P. pinaster and P. nigra, whereas the inverse pattern was found for A. pinsapo. Resilience to drought varied between species: natural stands of A. pinsapo, C. atlantica and P. pinaster recovered faster than plantations, while P. pinea plantations recovered faster than natural stands. Overall, plantations did not consistently show a higher sensitivity to climate and a lower capacity to recover after drought. Therefore, plantations are potential tools for mitigating climate warming.


Assuntos
Pinus , Traqueófitas , Mudança Climática , Secas , Florestas , Temperatura , Árvores
17.
Sci Total Environ ; 775: 145860, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631566

RESUMO

Climate change is increasing the frequency of extreme climate events, causing profound impacts on forest function and composition. Late frost defoliation (LFD) events, the loss of photosynthetic tissues due to low temperatures at the start of the growing season, might become more recurrent under future climate scenarios. Therefore, the detection of changes in late-frost risk in response to global change emerges as a high-priority research topic. Here, we used a tree-ring network from southern European beech (Fagus sylvatica L.) forests comprising Spain, Italy and the Austrian Alps, to assess the incidence of LFD events in the last seven decades. We fitted linear-mixed models of basal area increment using different LFD indicators considering warm spring temperatures and late-spring frosts as fixed factors. We reconstructed major LFD events since 1950, matching extreme values of LFD climatic indicators with sharp tree-ring growth reductions. The last LFD events were validated using remote sensing. Lastly, reconstructed LFD events were climatically and spatially characterized. Warm temperatures before the late-spring frost, defined by high values of growing-degree days, influenced beech growth negatively, particularly in the southernmost populations. The number of LFD events increased towards beech southern distribution edge. Spanish and the southernmost Italian beech forests experienced higher frequency of LFD events since the 1990s. Until then, LFD events were circumscribed to local scales, but since that decade, LFD events became widespread, largely affecting the whole beech southwestern distribution area. Our study, based on in-situ evidence, sheds light on the climatic factors driving LFD occurrence and illustrates how increased occurrence and spatial extension of late-spring frosts might constrain future southern European beech forests' growth and functionality. Observed alterations in the climate-phenology interactions in response to climate change represent a potential threat for temperate deciduous forests persistence in their drier/southern distribution edge.


Assuntos
Fagus , Áustria , Mudança Climática , Florestas , Itália , Espanha , Árvores
18.
Tree Physiol ; 40(6): 774-781, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32186730

RESUMO

Drought limits the long-distance transport of water in the xylem due to the reduced leaf-to-soil water potential difference and possible embolism-related losses of conductance and of sugars in the phloem due to the higher viscosity of the dehydrated sugary solution. This condition can have cascading effects in water and carbon (C) fluxes that may ultimately cause tree death. We hypothesize that the maintenance of xylem and phloem conductances is fundamental for survival also under reduced resource availability, when trees may produce effective and low C cost anatomical adjustments in the xylem and phloem close to the treetop where most of the hydraulic resistance is concentrated. We analyzed the treetop xylem and phloem anatomical characteristics in coexisting Scots pine trees, symptomatic and non-symptomatic of drought-induced dieback. We selected the topmost 55 cm of the main stem and selected several sampling positions at different distances from the stem apex to test for differences in the axial patterns between the two groups of trees. We measured the annual ring area, the tracheid hydraulic diameter (Dh) and cell wall thickness (CWT), the conductive phloem area and the average lumen diameter of the 20 largest phloem sieve cells (Dph). Declining trees grew less than the non-declining ones, and despite the similar axial scaling of anatomical traits, had larger Dh and lower CWT. Moreover, declining trees had wider Dph. Our results demonstrate that even under drought stress, maintenance of xylem and phloem efficiencies is of primary importance for survival, even if producing fewer larger tracheids may lead to a xylem more vulnerable to embolism formation.


Assuntos
Pinus , Árvores , Secas , Floema , Água , Xilema
19.
Nat Commun ; 11(1): 545, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992718

RESUMO

Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.


Assuntos
Secas , Árvores/crescimento & desenvolvimento , Adaptação Fisiológica , Mudança Climática , Cycadopsida/crescimento & desenvolvimento , Ecologia , Florestas , Magnoliopsida/crescimento & desenvolvimento , Mortalidade , Solo/química , Especificidade da Espécie , Estresse Fisiológico , Análise de Sobrevida , Árvores/classificação , Água
20.
Front Plant Sci ; 10: 1413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737025

RESUMO

Extreme climatic events, such as late frosts in spring during leaf flush, have considerable impacts on the radial growth of temperate broadleaf trees. Albeit, all broadleaved species are potentially vulnerable, damage depends on the particularities of the local climate, the species, and its phenology. The impact of late spring frosts has been widely investigated in the Northern Hemisphere, but the potential incidence in Southern Hemisphere tree species is still poorly known. Here, we reconstruct spring frost occurrence at 30 stands of the deciduous tree Nothofagus pumilio in its northern range of distribution in the Patagonian Andes. We identified tree ring-width reductions at stand level not associated with regional or local drought events, matching unusual minimum spring temperatures during leaf unfolding. Several spring frosts were identified along the northern distribution of N. pumilio, being more frequent in the more continental Argentinean forests. Spring frost in 1980 had the largest spatial extent. The spring frosts in 1980 and 1992 also induced damages in regional orchards. Spring frost damage was associated with (i) a period of unusually warm temperatures at the beginning of leaf unfolding, followed by (ii) freezing temperatures. This study helps expand our understanding of the climatic constraints that could determine the future growth and dynamics of Andean deciduous forests and the potential use of tree-rings as archives of extreme events of spring frosts in northern Patagonia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa