Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962377

RESUMO

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/genética , Estudos Transversais , Ataxia , Biomarcadores
2.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423193

RESUMO

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Assuntos
Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cerebelo/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Brain ; 146(10): 4132-4143, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071051

RESUMO

Transcriptional dysregulation has been described in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), an autosomal dominant ataxia caused by a polyglutamine expansion in the ataxin-3 protein. As ataxin-3 is ubiquitously expressed, transcriptional alterations in blood may reflect early changes that start before clinical onset and might serve as peripheral biomarkers in clinical and research settings. Our goal was to describe enriched pathways and report dysregulated genes, which can track disease onset, severity or progression in carriers of the ATXN3 mutation (pre-ataxic subjects and patients). Global dysregulation patterns were identified by RNA sequencing of blood samples from 40 carriers of ATXN3 mutation and 20 controls and further compared with transcriptomic data from post-mortem cerebellum samples of MJD patients and controls. Ten genes-ABCA1, CEP72, PTGDS, SAFB2, SFSWAP, CCDC88C, SH2B1, LTBP4, MEG3 and TSPOAP1-whose expression in blood was altered in the pre-ataxic stage and simultaneously, correlated with ataxia severity in the overt disease stage, were analysed by quantitative real-time PCR in blood samples from an independent set of 170 SCA3/MJD subjects and 57 controls. Pathway enrichment analysis indicated the Gαi signalling and the oestrogen receptor signalling to be similarly affected in blood and cerebellum. SAFB2, SFSWAP and LTBP4 were consistently dysregulated in pre-ataxic subjects compared to controls, displaying a combined discriminatory ability of 79%. In patients, ataxia severity was associated with higher levels of MEG3 and TSPOAP1. We propose expression levels of SAFB2, SFSWAP and LTBP4 as well as MEG3 and TSPOAP1 as stratification markers of SCA3/MJD progression, deserving further validation in longitudinal studies and in independent cohorts.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Doença de Machado-Joseph/genética , Transcriptoma , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/complicações , Ataxina-3/genética , Biomarcadores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas dos Microfilamentos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
4.
Mol Ther ; 31(7): 2220-2239, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194237

RESUMO

In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo over time. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain, exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEV transfer at physiological levels, which will shed light on the role of bdEVs in neural communication within the brain and beyond.


Assuntos
Vesículas Extracelulares , Integrases , Camundongos , Animais , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Integrases/genética , Integrases/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo
5.
Neuropathol Appl Neurobiol ; 49(2): e12892, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798010

RESUMO

The European Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative (ESMI) is a consortium established with the ambition to set up the largest European longitudinal trial-ready cohort of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease (SCA3/MJD), the most common autosomal dominantly inherited ataxia worldwide. A major focus of ESMI has been the identification of SCA3/MJD biomarkers to enable future interventional studies. As biosample collection and processing variables significantly impact the outcomes of biomarkers studies, biosampling procedures standardisation was done previously to study visit initiation. Here, we describe the ESMI consensus biosampling protocol, developed within the scope of ESMI, that ultimately might be translated to other neurodegenerative disorders, particularly ataxias, being the first step to protocol harmonisation in the field.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Biomarcadores
6.
Mov Disord ; 37(9): 1850-1860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35808813

RESUMO

BACKGROUND: Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. OBJECTIVES: To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. METHODS: In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow-up assessment after 1 year. RESULTS: An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose-finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow-up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. CONCLUSION: Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology-specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Ataxia , Estudos de Coortes , Humanos , Doença de Machado-Joseph/complicações , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença
7.
Mov Disord ; 37(2): 405-410, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713931

RESUMO

BACKGROUND: Lifestyle could influence the course of hereditary ataxias, but representative data are missing. OBJECTIVE: The objective of this study was to characterize lifestyle in spinocerebellar ataxia type 3 (SCA3) and investigate possible associations with disease parameters. METHODS: In a prospective cohort study, data on smoking, alcohol consumption, physical activity, physiotherapy, and body mass index (BMI) were collected from 243 patients with SCA3 and 119 controls and tested for associations with age of onset, disease severity, and progression. RESULTS: Compared with controls, patients with SCA3 were less active and consumed less alcohol. Less physical activity and alcohol abstinence were associated with more severe disease, but not with progression rates or age of onset. Smoking, BMI, or physiotherapy did not correlate with disease parameters. CONCLUSION: Differences in lifestyle factors of patients with SCA3 and controls as well as associations of lifestyle factors with disease severity are likely driven by the influence of symptoms on behavior. No association between lifestyle and disease progression was detected. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Estilo de Vida , Estudos Prospectivos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/epidemiologia
8.
Eur J Neurol ; 29(8): 2439-2452, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35478426

RESUMO

BACKGROUND AND PURPOSE: Clinical trials in spinocerebellar ataxia type 3 (SCA3) will require biomarkers for use as outcome measures. METHODS: To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid biomarkers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically assessed, and the plasma concentrations of the four proteins were analysed on the Simoa HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed for t-tau and phosphorylated tau (p-tau181 ). A transgenic SCA3 mouse model (MJDTg) was used to measure cerebellar t-tau levels. RESULTS: Plasma t-tau levels were higher in mutation carriers below the age of 50 compared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respectively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in mutation carriers compared to controls. Plasma NfL concentrations were higher in mutation carriers compared to controls, and differences were greater for younger carriers. The Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic patients (p < 0.001). CONCLUSION: Our results suggest that tau might be a marker of early disease stages in SCA3. NfL can discriminate mutation carriers from controls and is associated with different clinical variables. Longitudinal studies are required to confirm their potential role as biomarkers in clinical trials.


Assuntos
Doença de Machado-Joseph , Proteínas de Neurofilamentos , Proteínas tau , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Cerebelo/química , Heterozigoto , Humanos , Doença de Machado-Joseph/sangue , Doença de Machado-Joseph/líquido cefalorraquidiano , Doença de Machado-Joseph/genética , Camundongos , Camundongos Transgênicos , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
9.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34397117

RESUMO

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Ataxina-3/genética , Estudos Transversais , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Peptídeos
10.
J Transl Med ; 18(1): 161, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272938

RESUMO

BACKGROUND: Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is the most common of the dominantly inherited ataxias worldwide and is characterized by mutant ataxin-3 aggregation and neuronal degeneration. There is no treatment available to block or delay disease progression. In this work we investigated whether trehalose, a natural occurring disaccharide widely used in food and cosmetic industry, would rescue biochemical, behavioral and neuropathological features of an in vitro and of a severe MJD transgenic mouse model. METHODS: Two MJD animal models, a lentiviral based and a transgenic model, were orally treated with 2% trehalose solution for a period of 4 and 30 weeks, respectively. Motor behavior (rotarod, grip strength and footprint patterns) was evaluated at different time points and neuropathological features were evaluated upon in-life phase termination. RESULTS: Trehalose-treated MJD mice equilibrated for a longer time in the rotarod apparatus and exhibited an improvement of ataxic gait in footprint analysis. Trehalose-mediated improvements in motor behaviour were associated with a reduction of the MJD-associated neuropathology, as MJD transgenic mice treated with trehalose presented preservation of cerebellar layers thickness and a decrease in the size of ataxin-3 aggregates in Purkinje cells. In agreement, an improvement of neuropathological features was also observed in the full length lentiviral-based mouse model of MJD submitted to 2% trehalose treatment. CONCLUSIONS: The present study suggests trehalose as a safety pharmacological strategy to counteract MJD-associated behavioural and neuropathological impairments.


Assuntos
Doença de Machado-Joseph , Animais , Ataxina-3/genética , Modelos Animais de Doenças , Doença de Machado-Joseph/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Trealose/farmacologia
11.
Adv Exp Med Biol ; 1049: 349-367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29427113

RESUMO

Machado-Joseph disease (MJD) is a dominantly inherited disorder originally described in people of Portuguese descent, and associated with the expansion of a CAG tract in the coding region of the causative gene MJD1/ATX3. The CAG repeats range from 10 to 51 in the normal population and from 55 to 87 in SCA3/MJD patients. MJD1 encodes ataxin-3, a protein whose physiological function has been linked to ubiquitin-mediated proteolysis. Despite the identification of the causative mutation, the pathogenic process leading to the neurodegeneration observed in the disease is not yet completely understood. In the past years, several studies identified different molecular mechanisms and cellular pathways as being impaired or deregulated in MJD. Autophagy, proteolysis or post-translational modifications, among other processes, were implicated in MJD pathogenesis. From these studies it was possible to identify new targets for therapeutic intervention, which in some cases proved successful in models of disease.


Assuntos
Ataxina-3 , Autofagia/genética , Doença de Machado-Joseph , Processamento de Proteína Pós-Traducional/genética , Proteólise , Proteínas Repressoras , Expansão das Repetições de Trinucleotídeos , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(25): 7833-8, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056314

RESUMO

The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.


Assuntos
Cafeína/farmacologia , Transtornos da Memória/prevenção & controle , Transtornos do Humor/prevenção & controle , Neurônios/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Estresse Psicológico/complicações , Animais , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Humor/etiologia , Neurônios/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(13): E1642-51, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775546

RESUMO

Aging is characterized by autophagy impairment that contributes to age-related disease aggravation. Moreover, it was described that the hypothalamus is a critical brain area for whole-body aging development and has impact on lifespan. Neuropeptide Y (NPY) is one of the major neuropeptides present in the hypothalamus, and it has been shown that, in aged animals, the hypothalamic NPY levels decrease. Because caloric restriction (CR) delays aging, at least in part, by stimulating autophagy, and also increases hypothalamic NPY levels, we hypothesized that NPY could have a relevant role on autophagy modulation in the hypothalamus. Therefore, the aim of this study was to investigate the role of NPY on autophagy in the hypothalamus. Using both hypothalamic neuronal in vitro models and mice overexpressing NPY in the hypothalamus, we observed that NPY stimulates autophagy in the hypothalamus. Mechanistically, in rodent hypothalamic neurons, NPY increases autophagy through the activation of NPY Y1 and Y5 receptors, and this effect is tightly associated with the concerted activation of PI3K, MEK/ERK, and PKA signaling pathways. Modulation of hypothalamic NPY levels may be considered a potential strategy to produce protective effects against hypothalamic impairments associated with age and to delay aging.


Assuntos
Autofagia , Hipotálamo/citologia , Neurônios/citologia , Neuropeptídeo Y/fisiologia , Envelhecimento , Animais , Encéfalo/metabolismo , Restrição Calórica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Transdução de Sinais
14.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36811091

RESUMO

In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo overtime. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEVs transfer at physiological levels which will shed light on the role of bdEVs in neural communication within the brain and beyond.

15.
J Neurol ; 270(2): 944-952, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36324033

RESUMO

BACKGROUND: Non-motor symptoms (NMS) are a substantial burden for patients with SCA3. There are limited data on their frequency, and their relation with disease severity and activities of daily living is not clear. In addition, lifestyle may either influence or be affected by the occurrence of NMS. OBJECTIVE: To characterize NMS in SCA3 and investigate possible associations with disease severity and lifestyle factors. METHODS: In a prospective cohort study, we performed a cross-sectional analysis of NMS in 227 SCA3 patients, 42 pre-ataxic mutation carriers, and 112 controls and tested for associations with SARA score, activities of daily living, and the lifestyle factors alcohol consumption, smoking and physical activity. RESULTS: Sleep disturbance, restless legs syndrome, mild cognitive impairment, depression, bladder dysfunction and pallhypesthesia were frequent among SCA3 patients, while mainly absent in pre-ataxic mutation carriers. Except for restless legs syndrome, NMS correlated significantly with disease severity and activities of daily living. Alcohol abstinence was associated with bladder dysfunction. Patients with higher physical activity showed less cognitive impairment and fewer depressive symptoms, but these differences were not significant. CONCLUSION: This study revealed a clear association between disease severity and NMS, likely driven by the progression of the widespread neurodegenerative process. Associations between lifestyle and NMS can probably be attributed to the influence of NMS on lifestyle.


Assuntos
Síndrome das Pernas Inquietas , Humanos , Síndrome das Pernas Inquietas/epidemiologia , Estudos Prospectivos , Estudos Transversais , Atividades Cotidianas , Gravidade do Paciente , Estilo de Vida
16.
medRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163081

RESUMO

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.

17.
Sci Rep ; 12(1): 12513, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869235

RESUMO

The establishment of robust human brain organoids to model cerebellar diseases is essential to study new therapeutic strategies for cerebellum-associated disorders. Machado-Joseph disease (MJD) is a cerebellar hereditary neurodegenerative disease, without therapeutic options able to prevent the disease progression. In the present work, control and MJD induced-pluripotent stem cells were used to establish human brain organoids. These organoids were characterized regarding brain development, cell type composition, and MJD-associated neuropathology markers, to evaluate their value for cerebellar diseases modeling. Our data indicate that the organoids recapitulated, to some extent, aspects of brain development, such as astroglia emerging after neurons and the presence of ventricular-like zones surrounded by glia and neurons that are found only in primate brains. Moreover, the brain organoids presented markers of neural progenitors proliferation, neuronal differentiation, inhibitory and excitatory synapses, and firing neurons. The established brain organoids also exhibited markers of cerebellar neurons progenitors and mature cerebellar neurons. Finally, MJD brain organoids showed higher ventricular-like zone numbers, an indication of lower maturation, and an increased number of ataxin-3-positive aggregates, compared with control organoids. Altogether, our data indicate that the established organoids recapitulate important characteristics of human brain development and exhibit cerebellar features, constituting a resourceful tool for testing therapeutic approaches for cerebellar diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Humanos , Doença de Machado-Joseph/metabolismo , Doenças Neurodegenerativas/metabolismo , Organoides/metabolismo
18.
Acta Neuropathol Commun ; 10(1): 37, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305685

RESUMO

Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is the most common form of dominant SCA worldwide. Magnetic Resonance Imaging (MRI) and Proton Magnetic Resonance Spectroscopy (1H-MRS) provide promising non-invasive diagnostic and follow-up tools, also serving to evaluate therapies efficacy. However, pre-clinical studies showing relationship between MRI-MRS based biomarkers and functional performance are missing, which hampers an efficient clinical translation of therapeutics. This study assessed motor behaviour, neurochemical profiles, and morphometry of the cerebellum of MJD transgenic mice and patients aiming at establishing magnetic-resonance-based biomarkers. 1H-MRS and structural MRI measurements of MJD transgenic mice were performed with a 9.4 Tesla scanner, correlated with motor performance on rotarod and compared with data collected from human patients. We found decreased cerebellar white and grey matter and enlargement of the fourth ventricle in both MJD mice and human patients as compared to controls. N-acetylaspartate (NAA), NAA + N-acetylaspartylglutamate (NAA + NAAG), Glutamate, and Taurine, were significantly decreased in MJD mouse cerebellum regardless of age, whereas myo-Inositol (Ins) was increased at early time-points. Lower neurochemical ratios levels (NAA/Ins and NAA/total Choline), previously correlated with worse clinical status in SCAs, were also observed in MJD mice cerebella. NAA, NAA + NAAG, Glutamate, and Taurine were also positively correlated with MJD mice motor performance. Importantly, these 1H-MRS results were largely analogous to those found for MJD in human studies and in our pilot data in human patients. We have established a magnetic resonance-based biomarker approach to monitor novel therapies in preclinical studies and human clinical trials.


Assuntos
Doença de Machado-Joseph , Animais , Biomarcadores , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Ácido Glutâmico , Humanos , Doença de Machado-Joseph/patologia , Camundongos , Camundongos Transgênicos , Taurina
19.
Mol Ther Methods Clin Dev ; 18: 723-737, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913880

RESUMO

Extracellular vesicles (EVs) are membranous structures that protect RNAs from damage when circulating in complex biological fluids, such as plasma. RNAs are extremely specific to health and disease, being powerful tools for diagnosis, treatment response monitoring, and development of new therapeutic strategies for several diseases. In this context, EVs are potential sources of disease biomarkers and promising delivery vehicles. However, standardized and reproducible EV isolation protocols easy to implement in clinical practice are missing. Here, a size exclusion chromatography-based protocol for EV-isolation from human plasma was optimized. We propose a workflow to isolate EVs for transcriptional research that allows concomitant analysis of particle number and size, total protein, and quantification of a major plasma contaminant. This protocol yields 7.54 × 109 ± 1.22 × 108 particles, quantified by nanoparticle tracking analysis, with a mean size of 115.7 ± 11.12 nm and a mode size of 83.13 ± 4.72 nm, in a ratio of 1.19 × 1010 ± 7.38 × 109 particles/µg of protein, determined by Micro Bicinchoninic Acid (BCA) Protein Assay, and 3.09 ± 0.7 ng RNA, assessed by fluorescence-based RNA-quantitation, from only 900 µL of plasma. The protocol is fast and easy to implement and has potential for application in biomarkers research, therapeutic strategies development, and clinical practice.

20.
EMBO Mol Med ; 12(7): e11803, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510847

RESUMO

With molecular treatments coming into reach for spinocerebellar ataxia type 3 (SCA3), easily accessible, cross-species validated biomarkers for human and preclinical trials are warranted, particularly for the preataxic disease stage. We assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in ataxic and preataxic subjects of two independent multicentric SCA3 cohorts and in a SCA3 knock-in mouse model. Ataxic SCA3 subjects showed increased levels of both NfL and pNfH. In preataxic subjects, NfL levels increased with proximity to the individual expected onset of ataxia, with significant NfL elevations already 7.5 years before onset. Cross-sectional NfL levels correlated with both disease severity and longitudinal disease progression. Blood NfL and pNfH increases in human SCA3 were each paralleled by similar changes in SCA3 knock-in mice, here also starting already at the presymptomatic stage, closely following ataxin-3 aggregation and preceding Purkinje cell loss in the brain. Blood neurofilaments, particularly NfL, might thus provide easily accessible, cross-species validated biomarkers in both ataxic and preataxic SCA3, associated with earliest neuropathological changes, and serve as progression, proximity-to-onset and, potentially, treatment-response markers in both human and preclinical SCA3 trials.


Assuntos
Filamentos Intermediários , Doença de Machado-Joseph/sangue , Sintomas Prodrômicos , Animais , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Filamentos Intermediários/química , Masculino , Camundongos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa