Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
RNA ; 30(4): 337-353, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38278530

RESUMO

Next-generation RNA sequencing allows alternative splicing (AS) quantification with unprecedented resolution, with the relative inclusion of an alternative sequence in transcripts being commonly quantified by the proportion of reads supporting it as percent spliced-in (PSI). However, PSI values do not incorporate information about precision, proportional to the respective AS events' read coverage. Beta distributions are suitable to quantify inclusion levels of alternative sequences, using reads supporting their inclusion and exclusion as surrogates for the two distribution shape parameters. Each such beta distribution has the PSI as its mean value and is narrower when the read coverage is higher, facilitating the interpretability of its precision when plotted. We herein introduce a computational pipeline, based on beta distributions accurately modeling PSI values and their precision, to quantitatively and visually compare AS between groups of samples. Our methodology includes a differential splicing significance metric that compromises the magnitude of intergroup differences, the estimation uncertainty in individual samples, and the intragroup variability, being therefore suitable for multiple-group comparisons. To make our approach accessible and clear to both noncomputational and computational biologists, we developed betAS, an interactive web app and user-friendly R package for visual and intuitive differential splicing analysis from read count data.


Assuntos
Processamento Alternativo , Software , Splicing de RNA , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
BMC Genomics ; 24(1): 305, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280537

RESUMO

Our incomplete knowledge of the human transcriptome impairs the detection of disease-causing variants, in particular if they affect transcripts only expressed under certain conditions. These transcripts are often lacking from reference transcript sets, such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic diagnoses. We present SUsPECT (Solving Unsolved Patient Exomes/gEnomes using Custom Transcriptomes), a pipeline based on the Ensembl Variant Effect Predictor (VEP) to predict variant impact on custom transcript sets, such as those generated by long-read RNA-sequencing, for downstream prioritization. Our pipeline predicts the functional consequence and likely deleteriousness scores for missense variants in the context of novel open reading frames predicted from any transcriptome. We demonstrate the utility of SUsPECT by uncovering potential mutational mechanisms of pathogenic variants in ClinVar that are not predicted to be pathogenic using the reference transcript annotation. In further support of SUsPECT's utility, we identified an enrichment of immune-related variants predicted to have a more severe molecular consequence when annotating with a newly generated transcriptome from stimulated immune cells instead of the reference transcriptome. Our pipeline outputs crucial information for further prioritization of potentially disease-causing variants for any disease and will become increasingly useful as more long-read RNA sequencing datasets become available.


Assuntos
Software , Transcriptoma , Humanos , Anotação de Sequência Molecular , Análise de Sequência de RNA/métodos , Exoma , Sequenciamento de Nucleotídeos em Larga Escala
3.
Nucleic Acids Res ; 47(2): e7, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30277515

RESUMO

Alternative pre-mRNA splicing generates functionally distinct transcripts from the same gene and is involved in the control of multiple cellular processes, with its dysregulation being associated with a variety of pathologies. The advent of next-generation sequencing has enabled global studies of alternative splicing in different physiological and disease contexts. However, current bioinformatics tools for alternative splicing analysis from RNA-seq data are not user-friendly, disregard available exon-exon junction quantification or have limited downstream analysis features. To overcome such limitations, we have developed psichomics, an R package with an intuitive graphical interface for alternative splicing quantification and downstream dimensionality reduction, differential splicing and gene expression and survival analyses based on The Cancer Genome Atlas, the Genotype-Tissue Expression project, the Sequence Read Archive project and user-provided data. These integrative analyses can also incorporate clinical and molecular sample-associated features. We successfully used psichomics in a laptop to reveal alternative splicing signatures specific to stage I breast cancer and associated novel putative prognostic factors.


Assuntos
Processamento Alternativo , Software , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Gráficos por Computador , Feminino , Expressão Gênica , Humanos , Análise de Sobrevida
4.
Elife ; 122024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546191

RESUMO

We herein introduce voyAGEr, an online graphical interface to explore age-related gene expression alterations in 49 human tissues. voyAGEr offers a visualisation and statistical toolkit for the finding and functional exploration of sex- and tissue-specific transcriptomic changes with age. In its conception, we developed a novel bioinformatics pipeline leveraging RNA sequencing data, from the GTEx project, encompassing more than 900 individuals. voyAGEr reveals transcriptomic signatures of the known asynchronous ageing between tissues, allowing the observation of tissue-specific age periods of major transcriptional changes, associated with alterations in different biological pathways, cellular composition, and disease conditions. Notably, voyAGEr was created to assist researchers with no expertise in bioinformatics, providing a supportive framework for elaborating, testing and refining their hypotheses on the molecular nature of human ageing and its association with pathologies, thereby also aiding in the discovery of novel therapeutic targets. voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Regulação da Expressão Gênica , Biologia Computacional , Análise de Sequência de RNA
5.
Methods Mol Biol ; 2117: 179-205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31960379

RESUMO

Alternative splicing (AS) generates functionally distinct transcripts and is involved in multiple cellular processes, including stem cell differentiation. Several epithelial-to-mesenchymal transition-related splicing factors have also been associated with pluripotency. Concomitantly with the interest in studying AS in stem cell biology, the advent of next-generation sequencing of RNA (RNA-seq) has increased the public availability of transcriptomic data and enabled genome-wide AS studies. To facilitate performing such analyses in large publicly available or user-provided transcriptomics datasets, the psichomics R package provides an easy-to-use interface and efficient data visualization tools for AS quantification and integrative analyses of AS and gene expression data.psichomics is employed herein to study AS changes between human stem cells and fibroblasts, based on dimensionality reduction, and median- and variance-based differential AS and gene expression analyses. Putative RNA-binding protein regulators involved in those alterations are then identified based on correlation analyses in large cohorts of human tissue transcriptomes. We identified several alterations, both novel and previously reported, in alternative splicing events and in the expression of their candidate regulators that are associated with stem cell differentiation into fibroblasts.


Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Fibroblastos/citologia , Perfilação da Expressão Gênica/métodos , Células-Tronco/citologia , Diferenciação Celular , Células Cultivadas , Bases de Dados Genéticas , Fibroblastos/química , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Análise de Sequência de RNA , Software , Células-Tronco/química , Interface Usuário-Computador
6.
Artigo em Inglês | MEDLINE | ID: mdl-28062517

RESUMO

With its Firebrowse service (http://firebrowse.org/) the Broad Institute is making large-scale multi-platform omics data analysis results publicly available through a Representational State Transfer (REST) Application Programmable Interface (API). Querying this database through an API client from an arbitrary programming environment is an essential task, allowing other developers and researchers to focus on their analysis and avoid data wrangling. Hence, as a first result, we developed a workflow to automatically generate, test and deploy such clients for rapid response to API changes. Its underlying infrastructure, a combination of free and publicly available web services, facilitates the development of API clients. It decouples changes in server software from the client software by reacting to changes in the RESTful service and removing direct dependencies on a specific implementation of an API. As a second result, FirebrowseR, an R client to the Broad Institute's RESTful Firehose Pipeline, is provided as a working example, which is built by the means of the presented workflow. The package's features are demonstrated by an example analysis of cancer gene expression data.Database URL: https://github.com/mariodeng/.


Assuntos
Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Internet , Neoplasias , Linguagens de Programação , Interface Usuário-Computador , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa