Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8528, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609446

RESUMO

We tracked the consequences of in utero protein restriction in mice throughout their development and life course using a luciferase-based allelic reporter of imprinted Cdkn1c. Exposure to gestational low-protein diet (LPD) results in the inappropriate expression of paternally inherited Cdkn1c in the brains of embryonic and juvenile mice. These animals were characterised by a developmental delay in motor skills, and by behavioural alterations indicative of reduced anxiety. Exposure to LPD in utero resulted in significantly more tyrosine hydroxylase positive (dopaminergic) neurons in the midbrain of adult offspring as compared to age-matched, control-diet equivalents. Positron emission tomography (PET) imaging revealed an increase in striatal dopamine synthesis capacity in LPD-exposed offspring, where elevated levels of dopamine correlated with an enhanced sensitivity to cocaine. These data highlight a profound sensitivity of the developing epigenome to gestational protein restriction. Our data also suggest that loss of Cdkn1c imprinting and p57KIP2 upregulation alters the cellular composition of the developing midbrain, compromises dopamine circuitry, and thereby provokes behavioural abnormalities in early postnatal life. Molecular analyses showed that despite this phenotype, exposure to LPD solely during pregnancy did not significantly change the expression of key neuronal- or dopamine-associated marker genes in adult offspring.


Assuntos
Dieta com Restrição de Proteínas , Dopamina , Animais , Feminino , Camundongos , Gravidez , Alelos , Inibidor de Quinase Dependente de Ciclina p57 , Neurônios , Comportamento Animal
2.
Commun Biol ; 7(1): 442, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600349

RESUMO

Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.


Assuntos
Citocromo P-450 CYP1A1 , Receptores de Hidrocarboneto Arílico , Camundongos , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Luciferases/genética , Fígado/metabolismo , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa