Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Genet ; 138(5): 525-533, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30877375

RESUMO

Amelogenesis imperfecta (AI) refers to a genetically and clinically heterogeneous group of inherited disorders affecting the structure, composition, and quantity of tooth enamel. Both non-syndromic and syndromic forms of AI have been described and several genes affecting various aspects of the enamel physiology have been reported. Genetically modified murine models of various genes have provided insights into the complex regulation of proper amelogenesis. Non-syndromic AI occurs spontaneously also in dogs with known recessive variants in ENAM and SLC24A4 genes. Unlike rodents with a reduced dentition and continuously erupting incisors, canine models are valuable for human AI due to similarity in the dental anatomy including deciduous and permanent teeth. We have performed a series of clinical and genetic analyses to investigate AI in several breeds of dogs and describe here two novel recessive variants in the ENAM and ACP4 genes. A fully segregating missense variant (c.716C>T) in exon 8 of ENAM substitutes a well-conserved proline to leucine, p.(Pro239Leu), resulting in a clinical hypomineralization of teeth. A 1-bp insertion in ACP4 (c.1189dupG) is predicted to lead to a frameshift, p.(Ala397Glyfs), resulting in an abnormal C-terminal part of the protein, and hypoplastic AI. The ENAM variant was specific for Parson Russell Terriers with a carrier frequency of 9%. The ACP4 variant was found in two breeds, Akita and American Akita with a carrier frequency of 22%. These genetic findings establish novel canine models of human AI with a particular interest in the case of the ACP4-deficient model, since ACP4 physiology is poorly characterized in human AI. The affected dogs could also serve as preclinical models for novel treatments while the breeds would benefit from genetic tests devised here for veterinary diagnostics and breeding programs.


Assuntos
Amelogênese Imperfeita/genética , Amelogênese Imperfeita/veterinária , Proteínas do Esmalte Dentário/genética , Esmalte Dentário/fisiopatologia , Fosfatase Ácida Resistente a Tartarato/genética , Animais , Modelos Animais de Doenças , Cães , Mutação da Fase de Leitura/genética , Genótipo , Humanos , Mutação de Sentido Incorreto/genética
2.
PLoS Genet ; 12(5): e1006037, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27187611

RESUMO

One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.


Assuntos
Anormalidades Múltiplas/genética , Aracnodactilia/genética , Blefarofimose/genética , Fissura Palatina/genética , Contratura/genética , Exoftalmia/genética , Hiperostose Cortical Congênita/genética , Microcefalia/genética , Osteosclerose/genética , Anormalidades Múltiplas/patologia , Animais , Antiporters/genética , Aracnodactilia/patologia , Blefarofimose/patologia , Doenças Ósseas/genética , Doenças Ósseas/patologia , Caseína Quinase I/genética , Fissura Palatina/patologia , Contratura/patologia , Transtornos Craniomandibulares/genética , Transtornos Craniomandibulares/patologia , Modelos Animais de Doenças , Cães , Exoftalmia/patologia , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hiperostose Cortical Congênita/patologia , Microcefalia/patologia , Osteosclerose/patologia , Receptores Depuradores Classe F/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa