Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 92(6): e0002424, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700335

RESUMO

Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.


Assuntos
Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Criptococose , Cryptococcus , Interferon gama , Lectinas Tipo C , Pulmão , Animais , Criptococose/imunologia , Criptococose/microbiologia , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Cryptococcus/imunologia , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/microbiologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Camundongos Endogâmicos C57BL , Memória Imunológica , Imunidade Inata , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia
2.
Nucleic Acids Res ; 50(21): 12543-12557, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36454022

RESUMO

Several basic leucine zipper (bZIP) transcription factors have accessory motifs in their DNA-binding domains, such as the CNC motif of CNC family or the EHR motif of small Maf (sMaf) proteins. CNC family proteins heterodimerize with sMaf proteins to recognize CNC-sMaf binding DNA elements (CsMBEs) in competition with sMaf homodimers, but the functional role of the CNC motif remains elusive. In this study, we report the crystal structures of Nrf2/NFE2L2, a CNC family protein regulating anti-stress transcriptional responses, in a complex with MafG and CsMBE. The CNC motif restricts the conformations of crucial Arg residues in the basic region, which form extensive contact with the DNA backbone phosphates. Accordingly, the Nrf2-MafG heterodimer has approximately a 200-fold stronger affinity for CsMBE than canonical bZIP proteins, such as AP-1 proteins. The high DNA affinity of the CNC-sMaf heterodimer may allow it to compete with the sMaf homodimer on target genes without being perturbed by other low-affinity bZIP proteins with similar sequence specificity.


Assuntos
Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA/genética
3.
Cancer Immunol Immunother ; 71(6): 1357-1369, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34657194

RESUMO

Lymphodepleting cytotoxic regimens enhance the antitumor effects of adoptively transferred effector and naïve T cells. Although the mechanisms of antitumor immunity augmentation by lymphodepletion have been intensively investigated, the effects of lymphodepletion followed by T cell transfer on immune checkpoints in the tumor microenvironment remain unclear. The current study demonstrated that the expression of immune checkpoint molecules on transferred donor CD4+ and CD8+ T cells was significantly decreased in lymphodepleted tumor-bearing mice. In contrast, lymphodepletion did not reduce immune checkpoint molecule levels on recipient CD4+ and CD8+ T cells. Administration of anti-PD-1 antibodies after lymphodepletion and adoptive transfer of T cells significantly inhibited tumor progression. Further analysis revealed that transfer of both donor CD4+ and CD8+ T cells was responsible for the antitumor effects of a combination therapy consisting of lymphodepletion, T cell transfer and anti-PD-1 treatment. Our findings indicate that a possible mechanism underlying the antitumor effects of lymphodepletion followed by T cell transfer is the prevention of donor T cell exhaustion and dysfunction. PD-1 blockade may reinvigorate exhausted recipient T cells and augment the antitumor effects of lymphodepletion and adoptive T cell transfer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Transferência Adotiva , Animais , Humanos , Imunoterapia Adotiva , Camundongos , Neoplasias/terapia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
4.
J Virol ; 95(21): e0129621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406864

RESUMO

Influenza C virus (ICV) has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein. HE functions similarly to hemagglutinin (HA) and neuraminidase of the influenza A and B viruses (IAV and IBV, respectively). It has a monobasic site, which is cleaved by some host enzymes. The cleavage is essential to activating the virus, but the enzyme or enzymes in the respiratory tract have not been identified. This study investigated whether the host serine proteases, transmembrane protease serine S1 member 2 (TMPRSS2) and human airway trypsin-like protease (HAT), which reportedly cleave HA of IAV/IBV, are involved in HE cleavage. We established TMPRSS2- and HAT-expressing MDCK cells (MDCK-TMPRSS2 and MDCK-HAT). ICV showed multicycle replication with HE cleavage without trypsin in MDCK-TMPRSS2 cells as well as IAV did. The HE cleavage and multicycle replication did not appear in MDCK-HAT cells infected with ICV without trypsin, while HA cleavage and multistep growth of IAV appeared in the cells. Amino acid sequences of the HE cleavage site in 352 ICV strains were completely preserved. Camostat and nafamostat suppressed the growth of ICV and IAV in human nasal surface epithelial (HNE) cells. Therefore, this study revealed that, at least, TMPRSS2 is involved in HE cleavage and suggested that nafamostat could be a candidate for therapeutic drugs for ICV infection. IMPORTANCE Influenza C virus (ICV) is a pathogen that causes acute respiratory illness, mostly in children, but there are no anti-ICV drugs. ICV has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein on the virion surface, which possesses receptor-binding, receptor-destroying, and membrane fusion activities. The HE cleavage is essential for the virus to be activated, but the enzyme or enzymes in the respiratory tract have not been identified. This study revealed that transmembrane protease serine S1 member 2 (TMPRSS2), and not human airway trypsin-like protease (HAT), is involved in HE cleavage. This is a novel study on the host enzymes involved in HE cleavage, and the result suggests that the host enzymes, such as TMPRSS2, may be a target for therapeutic drugs of ICV infection.


Assuntos
Gammainfluenzavirus/enzimologia , Gammainfluenzavirus/metabolismo , Hemaglutininas Virais/metabolismo , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Serina Endopeptidases/metabolismo , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Benzamidinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Cães , Ésteres/farmacologia , Guanidinas/farmacologia , Interações entre Hospedeiro e Microrganismos , Humanos , Células Madin Darby de Rim Canino , Tripsina/metabolismo , Proteínas Virais/metabolismo
5.
Microbiol Immunol ; 66(7): 361-370, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35545856

RESUMO

The practical use of cell-based seasonal influenza vaccines is currently being considered in Japan. From the perspective of adventitious virus contamination, we assessed the suitability of NIID-MDCK cells (NIID-MDCK-Cs) as a safe substrate for the isolation of influenza viruses from clinical specimens. We first established a sensitive multiplex real-time PCR system to screen for 27 respiratory viruses and used it on 34 virus samples that were isolated by passaging influenza-positive clinical specimens in NIID-MDCK-Cs. Incidentally, the limit of detection (LOD) of the system was 100 or fewer genome copies per reaction. In addition to influenza viruses, human enterovirus 68 (HEV-D68) genomes were detected in two samples after two or three passages in NIID-MDCK-Cs. To further investigate the susceptibility of NIID-MDCK-Cs to adventitious viruses, eight common respiratory viruses were subjected to passages in NIID-MDCK-Cs. The genome copy numbers of seven viruses other than parainfluenza 3 decreased below the LOD by passage 4. By passaging in NIID-MDCK-Cs, the genome numbers of the input HEV-D68, 1 × 108 copies, declined to 102 at passage 3 and to under the LOD at passage 4, whereas those of the other six viruses were under the LOD by passage 3. These results implied that during the process of isolating influenza viruses with NIID-MDCK-Cs, contaminating viruses other than parainfluenza 3 can be efficiently removed by passages in NIID-MDCK-Cs. NIID-MDCK-Cs could be a safe substrate for isolating influenza viruses that can be used to develop cell-based influenza vaccine candidate viruses.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Infecções por Paramyxoviridae , Vírus , Animais , Cães , Humanos , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Desenvolvimento de Vacinas , Cultura de Vírus/métodos
6.
J Immunol ; 205(3): 686-698, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561568

RESUMO

IL-17A is a proinflammatory cytokine produced by many types of innate immune cells and Th17 cells and is involved in the elimination of extracellularly growing microorganisms, yet the role of this cytokine in the host defense against intracellularly growing microorganisms is not well known. Cryptococcus deneoformans is an opportunistic intracellular growth fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired immune responses. In the current study, we analyzed the role of IL-17A in the host defense against C. deneoformans infection. IL-17A was quickly produced by γδT cells at an innate immune phase in infected lungs. In IL-17A gene-disrupted mice, clearance of this fungal pathogen and the host immune response mediated by Th1 cells were significantly accelerated in infected lungs compared with wild-type mice. Similarly, killing of this fungus and production of inducible NO synthase and TNF-α were significantly enhanced in IL-17A gene-disrupted mice. In addition, elimination of this fungal pathogen, Th1 response, and expression of IL-12Rß2 and IFN-γ in NK and NKT cells were significantly suppressed by treatment with rIL-17A. The production of IL-12p40 and TNF-α from bone marrow-derived dendritic cells stimulated with C. deneoformans was significantly suppressed by rIL-17A. In addition, rIL-17A attenuated Th1 cell differentiation in splenocytes from transgenic mice highly expressing TCR for mannoprotein 98, a cryptococcal Ag, upon stimulation with recombinant mannoprotein 98. These data suggest that IL-17A may be involved in the negative regulation of the local host defense against C. deneoformans infection through suppression of the Th1 response.


Assuntos
Criptococose/imunologia , Cryptococcus/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Interleucina-17/imunologia , Células Th1/imunologia , Animais , Criptococose/genética , Cryptococcus/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/imunologia
7.
Infect Immun ; 89(10): e0033021, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34251289

RESUMO

The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2 knockout [Dectin-2KO]) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagocitose/fisiologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Criptococose/metabolismo , Citocinas/metabolismo , Células Dendríticas/microbiologia , Feminino , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo
8.
Chemistry ; 27(36): 9422-9428, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33851478

RESUMO

Lignans are a group of polyphenolic phytochemicals that possess a large spectrum of chemical structures and biological activities. Here the syntheses of lignans - anwulignan, burseran, dehydroxycubebin, ruburisandrin B, and sesamin - are achieved based on a borate-mediated one-pot sequential Suzuki-Miyaura coupling of cis- and trans-fused bicyclic boranes, which were prepared by diastereoselective cyclic hydroboration of exo-cyclic diene with cyclopentyl- and thexylboranes, respectively. A one-pot sequential Suzuki-Miyaura coupling of each cyclic borate with various aryl bromides initiated by activation of the cyclic borane with the carbon nucleophile provided 2,3-dibenzylbutane derivatives with different aromatic substituents. Finally, the syntheses of naturally occurring lignans were accomplished in several steps from the products of Suzuki-Miyaura coupling.


Assuntos
Boranos , Lignanas , Boratos , Brometos , Catálise
9.
Nucleic Acids Res ; 47(5): 2487-2505, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30759234

RESUMO

TDP-43 regulates cellular levels of Cajal bodies (CBs) that provide platforms for the assembly and RNA modifications of small nuclear ribonucleoproteins (snRNPs) involved in pre-mRNA splicing. Alterations in these snRNPs may be linked to pathogenesis of amyotrophic lateral sclerosis. However, specific roles for TDP-43 in CBs remain unknown. Here, we demonstrate that TDP-43 regulates the CB localization of four UG-rich motif-bearing C/D-box-containing small Cajal body-specific RNAs (C/D scaRNAs; i.e. scaRNA2, 7, 9 and 28) through the direct binding to these scaRNAs. TDP-43 enhances binding of a CB-localizing protein, WD40-repeat protein 79 (WDR79), to a subpopulation of scaRNA2 and scaRNA28; the remaining population of the four C/D scaRNAs was localized to CB-like structures even with WDR79 depletion. Depletion of TDP-43, in contrast, shifted the localization of these C/D scaRNAs, mainly into the nucleolus, as well as destabilizing scaRNA2, and reduced the site-specific 2'-O-methylation of U1 and U2 snRNAs, including at 70A in U1 snRNA and, 19G, 25G, 47U and 61C in U2 snRNA. Collectively, we suggest that TDP-43 and WDR79 have separate roles in determining CB localization of subsets of C/D and H/ACA scaRNAs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Corpos Enovelados/genética , Proteínas de Ligação a DNA/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/patologia , Nucléolo Celular/genética , Corpos Enovelados/metabolismo , Citidina/análogos & derivados , Citidina/genética , Células HeLa , Humanos , Chaperonas Moleculares , RNA Guia de Cinetoplastídeos/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Telomerase
10.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920301

RESUMO

Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell-deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.


Assuntos
Células T Matadoras Naturais/imunologia , Reepitelização/genética , Pele/imunologia , Cicatrização/genética , Animais , Calgranulina B/genética , Galactosilceramidas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucinas/genética , Leucócitos/imunologia , Leucócitos/microbiologia , Camundongos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Reepitelização/imunologia , Pele/microbiologia , Pele/patologia , Cicatrização/imunologia , Interleucina 22
11.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020213

RESUMO

Streptococcus pneumoniae is a major causative bacterium of community-acquired pneumonia. Dendritic cell-associated C-type lectin-2 (dectin-2), one of the C-type lectin receptors (CLRs), was previously reported to play a pivotal role in host defense against pneumococcal infection through regulating phagocytosis by neutrophils while not being involved in neutrophil accumulation. In the present study, to elucidate the possible contribution of other CLRs to neutrophil accumulation, we examined the role of caspase recruitment domain-containing protein 9 (CARD9), a common adaptor molecule for signal transduction triggered by CLRs, in neutrophilic inflammatory response against pneumococcal infection. Wild-type (WT), CARD9 knockout (KO), and dectin-2 KO mice were infected intratracheally with pneumococcus, and the infected lungs were histopathologically analyzed to assess neutrophil accumulation at 24 h postinfection. Bronchoalveolar lavage fluids (BALFs) were collected at the same time point to count the neutrophils and assess the production of inflammatory cytokines and chemokines. Neutrophil accumulation was significantly decreased in CARD9 KO mice, but not in dectin-2 KO mice. Tumor necrosis factor alpha (TNF-α), keratinocyte-derived chemokine (KC), and macrophage inflammatory protein-2 (MIP-2) production in BALFs were also attenuated in CARD9 KO mice, but not in dectin-2 KO mice. Production of TNF-α and KC by alveolar macrophages stimulated with pneumococcal culture supernatants was significantly attenuated in CARD9 KO mice, but not in dectin-2 KO mice, compared to that in each group's respective control mice. In addition, pneumococcus-infected CARD9 KO mice showed larger bacterial burdens in the lungs than did WT mice. These data indicate that CARD9 is required for neutrophil migration after pneumococcal infection, as well as inflammatory cytokine and chemokine production by alveolar macrophages, and suggest that a CLR distinct from dectin-2 may be involved in this response.


Assuntos
Candidíase Mucocutânea Crônica/complicações , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Pneumonia Pneumocócica/etiologia , Streptococcus pneumoniae , Animais , Biópsia , Quimiocinas/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Imunoglobulina G/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Neutrófilos/metabolismo , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia
12.
Infect Immun ; 88(11)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32868343

RESUMO

Cryptococcus deneoformans is an opportunistic fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired cell-mediated immune responses such as AIDS. Caspase-associated recruitment domain 9 (CARD9) plays a critical role in the host defense against cryptococcal infection, suggesting the involvement of one or more C-type lectin receptors (CLRs). In the present study, we analyzed the role of macrophage-inducible C-type lectin (Mincle), one of the CLRs, in the host defense against C. deneoformans infection. Mincle expression in the lungs of wild-type (WT) mice was increased in the early stage of cryptococcal infection in a CARD9-dependent manner. In Mincle gene-disrupted (Mincle KO) mice, the clearance of this fungus, pathological findings, Th1/Th2 response, and antimicrobial peptide production in the infected lungs were nearly comparable to those in WT mice. However, the production of interleukin-22 (IL-22), tumor necrosis factor alpha (TNF-α), and IL-6 and the expression of AhR were significantly decreased in the lungs of Mincle KO mice compared to those of WT mice. In in vitro experiments, TNF-α production by bone marrow-derived dendritic cells was significantly decreased in Mincle KO mice. In addition, the disrupted lysates of C. deneoformans, but not those of whole yeast cells, activated Mincle-triggered signaling in an assay with a nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Mincle may be involved in the production of Th22-related cytokines at the early stage of cryptococcal infection, although its role may be limited in the host defense against infection with C. deneoformans.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/imunologia , Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Int Arch Allergy Immunol ; 181(9): 651-664, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585675

RESUMO

INTRODUCTION: The enhanced type 2 helper (Th2) immune response is responsible for the pathogenesis of allergic asthma. To suppress the enhanced Th2 immune response, activation of the Th1 immune response has been an alternative strategy for anti-asthma therapy. In this context, effective Th1-inducing adjuvants that inhibit the development of allergic asthma but do not flare the side effects of the primary agent are required in clinical treatment and preventive medicine. OBJECTIVE: In this study, we aimed to determine the regulation of the Th2 type immune response in asthma by a novel immunostimulatory oligodeoxynucleotide (ODN) derived from Cryptococcus neoformans, termed ODN112, which contains a cytosine-guanine (CG) sequence but not canonical CpG motifs. METHODS: Using an ovalbumin-induced asthma mouse model, we assessed the effect of ODN112 on prototypical asthma-related features in the lung and on the Th1/Th2 profile in the lymph nodes and lung of mice treated with ODN112 during sensitization. RESULTS AND CONCLUSION: ODN112 treatment attenuated asthma features in mice. In the bronchial lymph nodes of the lungs and in the spleen, ODN112 increased interferon-γ production and attenuated Th2 recall responses. In dendritic cells (DCs) after allergen sensitization, ODN112 enhanced cluster of differentiation (CD) 40 and CD80 expression but did not alter CD86 expression. Interleukin-12p40 production from DCs was also increased in a Th2-polarizing condition. Our results suggest that ODN112 is a potential Th1-inducing adjuvant during Th2 cell differentiation in the sensitization phase.


Assuntos
Asma/tratamento farmacológico , Cryptococcus neoformans/metabolismo , Células Dendríticas/imunologia , Hipersensibilidade/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Células Th2/imunologia , Receptor Toll-Like 9/agonistas , Alérgenos/imunologia , Animais , Diferenciação Celular , Ilhas de CpG/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/genética , Ovalbumina/imunologia , Equilíbrio Th1-Th2
14.
Nucleic Acids Res ; 46(18): 9289-9298, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30202881

RESUMO

During ribosome biogenesis, ribosomal RNAs acquire various chemical modifications that ensure the fidelity of translation, and dysregulation of the modification processes can cause proteome changes as observed in cancer and inherited human disorders. Here, we report the complete chemical modifications of all RNAs of the human 80S ribosome as determined with quantitative mass spectrometry. We assigned 228 sites with 14 different post-transcriptional modifications, most of which are located in functional regions of the ribosome. All modifications detected are typical of eukaryotic ribosomal RNAs, and no human-specific modifications were observed, in contrast to a recently reported cryo-electron microscopy analysis. While human ribosomal RNAs appeared to have little polymorphism regarding the post-transcriptional modifications, we found that pseudouridylation at two specific sites in 28S ribosomal RNA are significantly reduced in ribosomes of patients with familial dyskeratosis congenita, a genetic disease caused by a point mutation in the pseudouridine synthase gene DKC1. The landscape of the entire epitranscriptomic ribosomal RNA modifications provides a firm basis for understanding ribosome function and dysfunction associated with human disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/genética , RNA/genética , Ribossomos/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Microscopia Crioeletrônica , Disceratose Congênita/genética , Células HeLa , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Pseudouridina/metabolismo , RNA/química , RNA/metabolismo , RNA Ribossômico 28S/química , RNA Ribossômico 28S/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura
15.
Anal Chem ; 91(24): 15634-15643, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31725277

RESUMO

RNA post-transcriptional modifications are common in all kingdoms of life and are predominantly affiliated with methylations at various nucleobase positions. Methylations occur frequently at specific sites on the RNA nucleobases and appear to regulate site-specific intermolecular/intramolecular interactions. Herein, we present a method that utilizes liquid chromatography-mass spectrometry (LC-MS) to identify positional monomethylated RNA nucleoside isomers. The method produces profiles of in-source fragmentation and subsequent tandem mass spectrometry (MS2) (pseudo-MS3) of RNase-digested fragments of an RNA and distinguishes between positional methylated nucleobase isomers by comparing their intranucleobase fragment ion profiles with signature profiles derived from authentic isomers. For method validation, we independently determined the positions of all known monomethylated nucleoside isomers in the Escherichia coli 16S/23S rRNAs. As proof of concept, we further applied this technology to fully characterize the base-modified nucleoside positional isomers, in rRNAs derived from Leishmania donovani, a human blood parasite afflicting millions around the globe. The method described herein will be highly beneficial for the delineation of RNA modification profiles in various cellular RNAs, and as it only requires a subpicomole amount of RNA, it could also be used for the structure-function studies of RNA populations represented in minute amounts in the cell.


Assuntos
Escherichia coli/genética , Leishmania/genética , Nucleosídeos/análise , RNA Ribossômico 18S/análise , RNA Ribossômico/análise , Humanos , Metilação , Nucleosídeos/química , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico 18S/química
16.
Microbiol Immunol ; 63(12): 500-512, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31544981

RESUMO

Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin-2 recognizes high-mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin-2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin-2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin-2-mediated activation of immune cells. In a NFAT-GFP reporter assay of the reported cells expressing Dectin-2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin-2-mediated signaling. This activity was detected in the supernatant of ß-glucanase-treated Cap67 and more strongly in the semi-purified polysaccharides of this supernatant using ConA-affinity chromatography (ConA-bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA-bound fraction of the ß-glucanase-treated Cap67 supernatant was bound to Dectin-2-Fc fusion protein in a dose-dependent manner and strongly induced the production of interleukin-12p40 and tumour necrosis factor-α by dendritic cells; this was abrogated under the Dectin-2-deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin-2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.


Assuntos
Células da Medula Óssea/imunologia , Parede Celular/imunologia , Células Dendríticas/imunologia , Lectinas Tipo C/fisiologia , Glicoproteínas de Membrana/imunologia , Polissacarídeos/imunologia , Animais , Células da Medula Óssea/citologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Células Dendríticas/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726690

RESUMO

Interferon (IFN)-γ is mainly secreted by CD4+ T helper 1 (Th1), natural killer (NK) and NKT cells after skin injury. Although IFN-γ is well known regarding its inhibitory effects on collagen synthesis by fibroblasts in vitro, information is limited regarding its role in wound healing in vivo. In the present study, we analyzed how the defect of IFN-γ affects wound healing. Full-thickness wounds were created on the backs of wild type (WT) C57BL/6 and IFN-γ-deficient (KO) mice. We analyzed the percent wound closure, wound breaking strength, accumulation of leukocytes, and expression levels of COL1A1, COL3A1, and matrix metalloproteinases (MMPs). IFN-γKO mice exhibited significant attenuation in wound closure on Day 10 and wound breaking strength on Day 14 after wound creation, characteristics that are associated with prolonged neutrophil accumulation. Expression levels of COL1A1 and COL3A1 mRNA were lower in IFN-γKO than in WT mice, whereas expression levels of MMP-2 (gelatinase) mRNA were significantly greater in IFN-γKO than in WT mice. Moreover, under neutropenic conditions created with anti-Gr-1 monoclonal antibodies, wound closure in IFN-γKO mice was recovered through low MMP-2 expression levels. These results suggest that IFN-γ may be involved in the proliferation and maturation stages of wound healing through the regulation of neutrophilic inflammatory responses.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , Interferon gama/deficiência , Metaloproteinase 2 da Matriz/imunologia , Neutrófilos/imunologia , Cicatrização/imunologia , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/imunologia , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interferon gama/imunologia , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Cicatrização/genética
18.
Chemistry ; 23(64): 16374-16379, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28881056

RESUMO

Synthesis of O-methylated glycolipids via direct stereoselective glycosidation whose sugar moieties are related to those in phenolic glycolipids (PGLs) is reported. Treatment of 2-O-methyl-rhamnosyl imidates with I2 and nBu4 NOTf resulted in their activation under low temperature and provided the α-rhamnosides with excellent α-selectivity. nBu4 NOTf enhanced the electorophilicity of iodine. This methodology improved the efficiency of the synthesis of both PGL-1 and PGL-tb1 sugars. The process involved the formation of 2-O-naphthylmethyl-α-rhamnoside and 2-O-methyl-α-fucoside. Sequential Suzuki-Miyaura coupling using synthetic glycosides, boracyclane, and aryl bromides provided glycolipids related to PGL sugars, and was accomplished with a one-pot process. Finally, we elucidated the immunosuppressive activities of all these synthetic compounds and found that a phenyl 3-O-α-rhamnosyl-2-O-methyl-α-rhamnoside possessing a 6-(2-naphthyl)hexyl group exhibited the strongest inhibitory effect.


Assuntos
Glicolipídeos/química , Produtos Biológicos/química , Catálise , Glicolipídeos/síntese química , Glicosilação , Imunossupressores/química , Iodetos/química , Conformação Molecular , Paládio/química , Fenóis/química , Estereoisomerismo
19.
Faraday Discuss ; 198: 397-407, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28287650

RESUMO

CuGaS2, (AgInS2)x-(ZnS)2-2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9-(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO-TiO2 composite) were only dispersed in water under 1 atm of CO2.

20.
Microbiol Immunol ; 61(11): 497-506, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28940687

RESUMO

Isolation of human metapneumovirus (HMPV) from clinical specimens is currently inefficient because of the lack of a cell culture system in which a distinct cytopathic effect (CPE) occurs. The cell lines LLC-MK2, Vero and Vero E6 are used for isolation of HMPV; however, the CPE in these cell lines is subtle and usually requires a long observation period and sometimes blind passages. Thus, a cell line in which an early and distinct CPE occurs following HMPV inoculation is highly desired by clinical virology laboratories. In this study, it was demonstrated that, in the human malignant melanoma cell line MNT-1, obvious syncytium formation occurs shortly after inoculation with HMPV-positive clinical specimens. In addition, the growth and efficiency of isolation of HMPV were greater using MNT-1 than using any other conventional cell line. Addition of this cell line to our routine viral isolation system for clinical specimens markedly enhanced isolation frequency, allowing isolation-based surveillance. MNT-1 has the potential to facilitate clinical and epidemiological studies of HMPV.


Assuntos
Melanoma/virologia , Metapneumovirus/fisiologia , Neoplasias Cutâneas/virologia , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Humanos , Metapneumovirus/genética , Metapneumovirus/crescimento & desenvolvimento , Metapneumovirus/isolamento & purificação , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa