Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 153(7): 1567-78, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23791183

RESUMO

The smallest reported bacterial genome belongs to Tremblaya princeps, a symbiont of Planococcus citri mealybugs (PCIT). Tremblaya PCIT not only has a 139 kb genome, but possesses its own bacterial endosymbiont, Moranella endobia. Genome and transcriptome sequencing, including genome sequencing from a Tremblaya lineage lacking intracellular bacteria, reveals that the extreme genomic degeneracy of Tremblaya PCIT likely resulted from acquiring Moranella as an endosymbiont. In addition, at least 22 expressed horizontally transferred genes from multiple diverse bacteria to the mealybug genome likely complement missing symbiont genes. However, none of these horizontally transferred genes are from Tremblaya, showing that genome reduction in this symbiont has not been enabled by gene transfer to the host nucleus. Our results thus indicate that the functioning of this three-way symbiosis is dependent on genes from at least six lineages of organisms and reveal a path to intimate endosymbiosis distinct from that followed by organelles.


Assuntos
Bactérias/genética , Betaproteobacteria/genética , Transferência Genética Horizontal , Hemípteros/genética , Hemípteros/microbiologia , Simbiose , Aminoácidos/biossíntese , Animais , Bactérias/classificação , Perfilação da Expressão Gênica , Hemípteros/fisiologia , Dados de Sequência Molecular , Filogenia
2.
Proc Natl Acad Sci U S A ; 112(51): E7093-100, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644562

RESUMO

Stem cells are pivotal for development and tissue homeostasis of multicellular animals, and the quest for a gene toolkit associated with the emergence of stem cells in a common ancestor of all metazoans remains a major challenge for evolutionary biology. We reconstructed the conserved gene repertoire of animal stem cells by transcriptomic profiling of totipotent archeocytes in the demosponge Ephydatia fluviatilis and by tracing shared molecular signatures with flatworm and Hydra stem cells. Phylostratigraphy analyses indicated that most of these stem-cell genes predate animal origin, with only few metazoan innovations, notably including several partners of the Piwi machinery known to promote genome stability. The ancestral stem-cell transcriptome is strikingly poor in transcription factors. Instead, it is rich in RNA regulatory actors, including components of the "germ-line multipotency program" and many RNA-binding proteins known as critical regulators of mammalian embryonic stem cells.


Assuntos
Células-Tronco/metabolismo , Animais , Evolução Molecular , Instabilidade Genômica , Hydra/citologia , Hydra/genética , Mamíferos , Filogenia , Poríferos/citologia , Poríferos/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Transcriptoma
3.
Nature ; 469(7331): 525-8, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21196932

RESUMO

In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.


Assuntos
Diferenciação Celular , Urocordados/crescimento & desenvolvimento , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Larva , Metamorfose Biológica , Células-Tronco Neurais/citologia
4.
Nature ; 476(7360): 320-3, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785439

RESUMO

Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.


Assuntos
Antozoários/genética , Antozoários/fisiologia , Mudança Climática , Genoma/genética , Animais , Antozoários/química , Antozoários/imunologia , Recifes de Corais , Cicloexilaminas , Cistationina beta-Sintase/genética , Cisteína/biossíntese , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Fósseis , Glicina/análogos & derivados , Glicina/biossíntese , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/imunologia , Simbiose/genética , Raios Ultravioleta
5.
Dev Biol ; 403(1): 43-56, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888074

RESUMO

Hox cluster genes play crucial roles in development of the metazoan antero-posterior axis. Functions of Hox genes in patterning the central nervous system and limb buds are well known. They are also expressed in chordate endodermal tissues, where their roles in endodermal development are still poorly understood. In the invertebrate chordate, Ciona intestinalis, endodermal tissues are in a premature state during the larval stage, and they differentiate into the digestive tract during metamorphosis. In this study, we showed that disruption of a Hox gene, Ci-Hox10, prevented intestinal formation. Ci-Hox10-knock-down larvae displayed defective migration of endodermal strand cells. Formation of a protrusion, which is important for cell migration, was disrupted in these cells. The collagen type IX gene is a downstream target of Ci-Hox10, and is negatively regulated by Ci-Hox10 and a matrix metalloproteinase ortholog, prior to endodermal cell migration. Inhibition of this regulation prevented cellular migration. These results suggest that Ci-Hox10 regulates endodermal strand cell migration by forming a protrusion and by reconstructing the extracellular matrix.


Assuntos
Movimento Celular/fisiologia , Ciona intestinalis/embriologia , Endoderma/citologia , Proteínas de Homeodomínio/genética , Intestinos/embriologia , Animais , Padronização Corporal/genética , Diferenciação Celular , Ciona intestinalis/metabolismo , Colágeno Tipo IX/biossíntese , Colágeno Tipo IX/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Homeobox/genética , Proteínas de Homeodomínio/metabolismo , Intestinos/citologia
6.
Mol Biol Evol ; 32(1): 81-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25234703

RESUMO

Because self-incompatibility loci are maintained heterozygous and recombination within self-incompatibility loci would be disadvantageous, self-incompatibility loci are thought to contribute to structural and functional differentiation of chromosomes. Although the hermaphrodite chordate, Ciona intestinalis, has two self-incompatibility genes, this incompatibility system is incomplete and self-fertilization occurs under laboratory conditions. Here, we established an inbred strain of C. intestinalis by repeated self-fertilization. Decoding genome sequences of sibling animals of this strain identified a 2.4-Mbheterozygous region on chromosome 7. A self-incompatibility gene, Themis-B, was encoded within this region. This observation implied that this self-incompatibility locus and the linkage disequilibrium of its flanking region contribute to the formation of the 2.4-Mb heterozygous region, probably through recombination suppression. We showed that different individuals in natural populations had different numbers and different combinations of Themis-B variants, and that the rate of self-fertilization varied among these animals. Our result explains why self-fertilization occurs under laboratory conditions. It also supports the concept that the Themis-B locus is preferentially retained heterozygous in the inbred line and contributes to the formation of the 2.4-Mb heterozygous region. High structural variations might suppress recombination, and this long heterozygous region might represent a preliminary stage of structural differentiation of chromosomes.


Assuntos
Animais Endogâmicos/genética , Ciona intestinalis/genética , Heterozigoto , Animais , Animais Endogâmicos/fisiologia , Cromossomos , Ciona intestinalis/fisiologia , Loci Gênicos , Variação Genética , Autofertilização , Análise de Sequência de DNA
7.
Development ; 139(12): 2156-60, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22573621

RESUMO

Retinoic acid (RA)-mediated expression of the homeobox gene Hox1 is a hallmark of the chordate central nervous system (CNS). It has been suggested that the RA-Hox1 network also functions in the epidermal ectoderm of chordates. Here, we show that in the urochordate ascidian Ciona intestinalis, RA-Hox1 in the epidermal ectoderm is necessary for formation of the atrial siphon placode (ASP), a structure homologous to the vertebrate otic placode. Loss of Hox1 function resulted in loss of the ASP, which could be rescued by expressing Hox1 in the epidermis. As previous studies showed that RA directly upregulates Hox1 in the epidermis of Ciona larvae, we also examined the role of RA in ASP formation. We showed that abolishment of RA resulted in loss of the ASP, which could be rescued by forced expression of Hox1 in the epidermis. Our results suggest that RA-Hox1 in the epidermal ectoderm played a key role in the acquisition of the otic placode during chordate evolution.


Assuntos
Ciona intestinalis/crescimento & desenvolvimento , Epiderme/crescimento & desenvolvimento , Átrios do Coração/anatomia & histologia , Átrios do Coração/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Ciona intestinalis/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/crescimento & desenvolvimento , Brânquias/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Proteínas de Homeodomínio/genética , Metamorfose Biológica/genética , Desenvolvimento Muscular/efeitos dos fármacos , Músculos/efeitos dos fármacos , Mutação/genética
8.
Genesis ; 52(12): 952-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394327

RESUMO

The organization of echinoderm Hox clusters is of interest due to the role that Hox genes play in deuterostome development and body plan organization, and the unique gene order of the Hox complex in the sea urchin Strongylocentrotus purpuratus, which has been linked to the unique development of the axial region. Here, it has been reported that the Hox and ParaHox clusters of Acanthaster planci, a corallivorous starfish found in the Pacific and Indian oceans, generally resembles the chordate and hemichordate clusters. The A. planci Hox cluster shared with sea urchins the loss of one of the medial Hox genes, even-skipped (Evx) at the anterior of the cluster, as well as organization of the posterior Hox genes.


Assuntos
Genes Homeobox , Ouriços-do-Mar/genética , Estrelas-do-Mar/genética , Animais , Evolução Molecular , Deleção de Genes , Família Multigênica , Filogenia , Ouriços-do-Mar/classificação , Estrelas-do-Mar/classificação
9.
Mol Biol Evol ; 30(1): 167-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22936719

RESUMO

Innate immunity in corals is of special interest not only in the context of self-defense but also in relation to the establishment and collapse of their obligate symbiosis with dinoflagellates of the genus Symbiodinium. In innate immunity system of vertebrates, approximately 20 tripartite nucleotide oligomerization domain (NOD)-like receptor proteins that are defined by the presence of a NAIP, CIIA, HET-E and TP1 (NACHT) domain, a C-terminal leucine-rich repeat (LRR) domain, and one of three types of N-terminal effector domain, are known to function as the primary intracellular pattern recognition molecules. Surveying the coral genome revealed not only a larger number of NACHT- and related domain nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)-encoding loci (~500) than in other metazoans but also surprising diversity of domain combinations among the coral NACHT/NB-ARC-containing proteins; N-terminal effector domains included the apoptosis-related domains caspase recruitment domain (CARD), death effector domain (DED), and Death, and C-terminal repeat domains included LRRs, tetratricopeptide repeats, ankyrin repeats, and WD40 repeats. Many of the predicted coral proteins that contain a NACHT/NB-ARC domain also contain a glycosyl transferase group 1 domain, a novel domain combination first found in metazoans. Phylogenetic analyses suggest that the NACHT/NB-ARC domain inventories of various metazoan lineages, including corals, are largely products of lineage-specific expansions. Many of the NACHT/NB-ARC loci are organized in pairs or triplets in the Acropora genome, suggesting that the large coral NACHT/NB-ARC repertoire has been generated at least in part by tandem duplication. In addition, shuffling of N-terminal effector domains may have occurred after expansions of specific NACHT/NB-ARC-repeat domain types. These results illustrate the extraordinary complexity of the innate immune repertoire of corals, which may in part reflect adaptive evolution to a symbiotic lifestyle in a uniquely complex and challenging environment.


Assuntos
Antozoários/genética , Proteínas Adaptadoras de Sinalização NOD/genética , Domínios e Motivos de Interação entre Proteínas , Animais , Antozoários/imunologia , Evolução Molecular , Duplicação Gênica , Loci Gênicos , Variação Genética , Genoma , Imunidade Inata/genética , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Filogenia , Análise de Sequência de DNA
10.
Biochem Biophys Res Commun ; 451(2): 314-8, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25094046

RESUMO

The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin·serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity.


Assuntos
Evolução Biológica , Ciona intestinalis/citologia , Ciona intestinalis/fisiologia , Mastócitos/fisiologia , Mastócitos/ultraestrutura , Sequência de Aminoácidos , Animais , Ciona intestinalis/genética , Clonagem Molecular , Evolução Molecular , Feminino , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Liberação de Histamina , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Humanos , Imunidade Inata , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Mastócitos/imunologia , Dados de Sequência Molecular , Prostaglandina D2/biossíntese , Vesículas Secretórias/fisiologia , Homologia de Sequência de Aminoácidos , Serina Proteases/metabolismo , Especificidade da Espécie
11.
Development ; 138(3): 577-87, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21205801

RESUMO

Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermis occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.


Assuntos
Cordados/embriologia , Ciona intestinalis/citologia , Ciona intestinalis/embriologia , Fase G2/fisiologia , Mitose/fisiologia , Morfogênese/fisiologia , Neurulação/fisiologia , Animais , Cordados/metabolismo , Ciona intestinalis/metabolismo , Fase G2/genética , Hibridização In Situ , Microscopia Confocal , Mitose/genética , Morfogênese/genética , Neurulação/genética
12.
Nature ; 453(7198): 1064-71, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18563158

RESUMO

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Assuntos
Cordados/genética , Evolução Molecular , Genoma/genética , Animais , Cordados/classificação , Sequência Conservada , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Genes/genética , Ligação Genética , Humanos , Íntrons/genética , Cariotipagem , Família Multigênica , Filogenia , Polimorfismo Genético/genética , Proteínas/genética , Sintenia , Fatores de Tempo , Vertebrados/classificação , Vertebrados/genética
13.
Zoolog Sci ; 31(3): 129-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24601774

RESUMO

To test whether telomere length can be used in estimating the age of colonial corals, we used terminal restriction fragment (TRF) length analysis to compare the telomere lengths of the coral Acropora digitifera at three developmental stages: sperm, planula larvae, and polyps of adult colonies. We also compared the mean TRF lengths between branches at the center and periphery of tabular colonies of A. digitifera. A significant difference was observed in the mean TRF lengths in sperm, planulae, and polyps. The mean TRF length was longest in sperm and shortest in polyps from adult colonies. These results suggest that telomere length decreases during coral development and may be useful for estimating coral age. However, the mean TRF length of branches at the center of a table-form colony tended to be longer than that of peripheral branches, although this difference was not statistically significant. This suggests that both the chronological age of polyps and cell proliferation rate influence telomere length in polyps, and that estimating coral age based on telomere length is not a simple endeavor.


Assuntos
Antozoários/genética , Encurtamento do Telômero , Telômero/fisiologia , Animais , DNA , Larva/genética , Masculino , Espermatozoides
14.
Zoolog Sci ; 31(7): 414-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25001912

RESUMO

Recent investigations into the evolution of deuterostomes and the origin of chordates have paid considerable attention to hemichordates (acorn worms), as hemichordates and echinoderms are the closest chordate relatives. The present study prepared cDNA libraries from Ptychodera flava, to study expression and function of genes involved in development of the hemichordate body plan. Expressed sequence tag (EST) analyses of nine cDNA libraries yielded 18,832 cloned genes expressed in eggs, 18,739 in blastulae, 18,539 in gastrulae, 18,811 in larvae, 18,978 in juveniles, 11,802 in adult proboscis, 17,259 in stomochord, 11,886 in gills, and 11,580 in liver, respectively. A set of 34,159 uni-gene clones of P. flava was obtained. This cDNA resource will be valuable for studying temporal and spatial expression of acorn worm genes during development.


Assuntos
Cordados não Vertebrados/fisiologia , DNA Complementar/metabolismo , Regulação da Expressão Gênica/fisiologia , Animais , Clonagem Molecular , DNA Complementar/genética , Etiquetas de Sequências Expressas
15.
J Hered ; 105(1): 1-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24336862

RESUMO

Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.


Assuntos
Genoma , Genômica/métodos , Invertebrados/classificação , Invertebrados/genética , Animais , Evolução Biológica , Organizações , Filogenia
16.
Int J Mol Sci ; 15(8): 14364-71, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25196437

RESUMO

Barnacles of the genus Neoverruca are abundant near deep-sea hydrothermal vents of the northwestern Pacific Ocean, and are useful for understanding processes of population formation and maintenance of deep-sea vent faunas. Using next-generation sequencing, we isolated 12 polymorphic microsatellite loci from Neoverruca sp., collected in the Okinawa Trough. These microsatellite loci revealed 2-19 alleles per locus. The expected and observed heterozygosities ranged from 0.286 to 1.000 and 0.349 to 0.935, respectively. Cross-species amplification showed that 9 of the 12 loci were successfully amplified for Neoverruca brachylepadoformis in the Mariana Trough. A pairwise FST value calculated using nine loci showed significant genetic differentiation between the two species. Consequently, the microsatellite markers we developed will be useful for further population genetic studies to elucidate genetic diversity, differentiation, classification, and evolutionary processes in the genus Neoverruca.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fontes Hidrotermais , Repetições de Microssatélites/genética , Thoracica/genética , Animais , Genética Populacional
17.
J Antibiot (Tokyo) ; 77(5): 288-298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438499

RESUMO

The biosynthetic gene clusters (BGCs) for the macrocyclic lactone-based polyketide compounds are extremely large-sized because the polyketide synthases that generate the polyketide chains of the basic backbone are of very high molecular weight. In developing a heterologous expression system for the large BGCs amenable to the production of such natural products, we selected concanamycin as an appropriate target. We obtained a bacterial artificial chromosome (BAC) clone with a 211-kb insert harboring the entire BGC responsible for the biosynthesis of concanamycin. Heterologous expression of this clone in a host strain, Streptomyces avermitilis SUKA32, permitted the production of concanamycin, as well as that of two additional aromatic polyketides. Structural elucidation identified these additional products as ent-gephyromycin and a novel compound that was designated JBIR-157. We describe herein sequencing and expression studies performed on these BGCs, demonstrating the utility of large BAC clones for the heterologous expression of cryptic or near-silent loci.


Assuntos
Cromossomos Artificiais Bacterianos , Família Multigênica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Produtos Biológicos/metabolismo
18.
Genesis ; 51(9): 647-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832845

RESUMO

During early embryogenesis, embryonic cells gradually restrict their developmental potential and are eventually destined to give rise to one type of cells. Molecular mechanisms underlying developmental fate restriction are one of the major research subjects within developmental biology. In this article, this subject was addressed by combining blastomere isolation with microarray analysis. During the 6th cleavage of the Ciona intestinalis embryo, from the 32-cell to the 64-cell stage, four mother cells divide into daughter cells with two distinct fates, one giving rise to notochord precursor cells and the other to nerve cord precursors. Approximately 2,200 each of notochord and nerve cord precursor cells were isolated, and their mRNA expression profiles were compared by microarray. This analysis identified 106 and 68 genes, respectively, that are differentially expressed in notochord and nerve cord precursor cells. These included not only genes for transcription factors and signaling molecules but also those with generalized functions observed in many types of cells. In addition, whole-mount in situ hybridization showed dynamic spatial expression profiles of these genes during segregation of the two fates: partitioning of transcripts present in the mother cells into either type of daughter cells, and initiation of preferential gene expression in either type of cells.


Assuntos
Linhagem da Célula , Ciona intestinalis/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Notocorda/embriologia , Animais , Diferenciação Celular , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Notocorda/citologia , Notocorda/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
BMC Evol Biol ; 13: 129, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23802544

RESUMO

BACKGROUND: ParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava. RESULTS: We found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates. CONCLUSIONS: Our study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity.


Assuntos
Cordados não Vertebrados/genética , Evolução Molecular , Proteínas de Homeodomínio/genética , Família Multigênica , Animais , Cordados não Vertebrados/classificação , Genoma , Filogenia
20.
Genome Res ; 20(10): 1459-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20647237

RESUMO

Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.


Assuntos
Bases de Dados Factuais , Biologia do Desenvolvimento/métodos , Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Internet , Urocordados , Animais , Cordados/embriologia , Cordados/genética , Cordados/crescimento & desenvolvimento , Biologia Computacional/métodos , Urocordados/embriologia , Urocordados/genética , Urocordados/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa