Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 24(8): 2567-2573, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367281

RESUMO

The boundary between CaRuO3 and CaMnO3 is an ideal test bed for emergent magnetic ground states stabilized through interfacial electron interactions. In this system, nominally antiferromagnetic and paramagnetic materials combine to yield interfacial ferromagnetism in CaMnO3 due to electron leakage across the interface. In this work, we show that the crystal symmetry at the surface is a critical factor determining the nature of the interfacial interactions. Specifically, by growing CaRuO3/CaMnO3 heterostructures along the (111) instead of the (001) crystallographic axis, we achieve a 3-fold enhancement of the magnetization and involve the CaRuO3 layers in the ferromagnetism, which now spans both constituent materials. The stabilization of a net magnetic moment in CaRuO3 through strain effects has been long-sought but never consistently achieved, and our observations demonstrate the importance of interface engineering in the development of new functional heterostructures.

2.
Nano Lett ; 23(24): 11925-11931, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088819

RESUMO

As a topological Dirac semimetal with controllable spin-orbit coupling and conductivity, PtSe2, a transition-metal dichalcogenide, is a promising material for several applications, from optoelectrics to sensors. However, its potential for spintronics applications has yet to be explored. In this work, we demonstrate that the PtSe2/Ni80Fe20 heterostructure can generate large damping-like current-induced spin-orbit torques (SOT), despite the absence of spin-splitting in bulk PtSe2. The efficiency of charge-to-spin conversion is found to be -0.1 ± 0.02 nm-1 in PtSe2/Ni80Fe20, which is 3 times that of the control sample, Ni80Fe20/Pt. Our band structure calculations show that the SOT due to PtSe2 arises from an unexpectedly large spin splitting in the interfacial region of PtSe2 introduced by the proximity magnetic field of the Ni80Fe20 layer. Our results open up the possibilities of using large-area PtSe2 for energy-efficient nanoscale devices by utilizing proximity-induced SOT.

3.
Proc Natl Acad Sci U S A ; 112(35): 10869-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26272923

RESUMO

Phase separation is a crucial ingredient of the physics of manganites; however, the role of mixed phases in the development of the colossal magnetoresistance (CMR) phenomenon still needs to be clarified. We report the realization of CMR in a single-valent LaMnO3 manganite. We found that the insulator-to-metal transition at 32 GPa is well described using the percolation theory. Pressure induces phase separation, and the CMR takes place at the percolation threshold. A large memory effect is observed together with the CMR, suggesting the presence of magnetic clusters. The phase separation scenario is well reproduced, solving a model Hamiltonian. Our results demonstrate in a clean way that phase separation is at the origin of CMR in LaMnO3.

4.
J Phys Condens Matter ; 30(23): 235601, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701606

RESUMO

Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin-orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant [Formula: see text] states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2-x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.

5.
Phys Rev Lett ; 101(25): 256801, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113736

RESUMO

Transport measurements of the two-dimensional electron gas at the LaAlO3-SrTiO3 interface have found a density of carriers much lower than expected from the "polar catastrophe" arguments. From a detail density-functional study, we suggest how this discrepancy may be reconciled. We find that electrons occupy multiple subbands at the interface leading to a rich array of transport properties. Some electrons are confined to a single interfacial layer and susceptible to localization, while others with small masses and extended over several layers are expected to contribute to transport.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa