Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 150(4): 697-709, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22884692

RESUMO

Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Ubiquitina-Proteína Ligases/metabolismo , Alphapapillomavirus , Linhagem Celular , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Transcrição Gênica , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação
2.
Hum Mol Genet ; 32(14): 2386-2398, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37220877

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that share pathological features, including the aberrant accumulation of ubiquitinated protein inclusions within motor neurons. Previously, we have shown that the sequestration of ubiquitin (Ub) into inclusions disrupts Ub homeostasis in cells expressing ALS-associated variants superoxide dismutase 1 (SOD1), fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43). Here, we investigated whether an ALS/FTD-linked pathogenic variant in the CCNF gene, encoding the E3 Ub ligase Cyclin F (CCNF), also perturbs Ub homeostasis. The presence of a pathogenic CCNF variant was shown to cause ubiquitin-proteasome system (UPS) dysfunction in induced pluripotent stem cell-derived motor neurons harboring the CCNF  S621G mutation. The expression of the CCNFS621G variant was associated with an increased abundance of ubiquitinated proteins and significant changes in the ubiquitination of key UPS components. To further investigate the mechanisms responsible for this UPS dysfunction, we overexpressed CCNF in NSC-34 cells and found that the overexpression of both wild-type (WT) and the pathogenic variant of CCNF (CCNFS621G) altered free Ub levels. Furthermore, double mutants designed to decrease the ability of CCNF to form an active E3 Ub ligase complex significantly improved UPS function in cells expressing both CCNFWT and the CCNFS621G variant and were associated with increased levels of free monomeric Ub. Collectively, these results suggest that alterations to the ligase activity of the CCNF complex and the subsequent disruption to Ub homeostasis play an important role in the pathogenesis of CCNF-associated ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Ciclinas/genética , Neurônios Motores/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doença de Pick/metabolismo , Homeostase/genética , Mutação
3.
Am J Physiol Endocrinol Metab ; 326(6): E842-E855, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656127

RESUMO

Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Intolerância à Glucose , Gotículas Lipídicas , Fígado , Camundongos Endogâmicos C57BL , Proteoma , Animais , Masculino , Camundongos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/etiologia , Proteoma/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Gotículas Lipídicas/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Proteômica/métodos , Resistência à Insulina
4.
J Lipid Res ; 61(2): 178-191, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857389

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25-/- versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25's action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.


Assuntos
Fígado Gorduroso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gotículas Lipídicas/enzimologia , Peroxissomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/deficiência
5.
J Cell Sci ; 131(11)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29748379

RESUMO

A hallmark of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitylated protein inclusions within motor neurons. Recent studies suggest the sequestration of ubiquitin (Ub) into inclusions reduces the availability of free Ub, which is essential for cellular function and survival. However, the dynamics of the Ub landscape in ALS have not yet been described. Here, we show that Ub homeostasis is altered in a cell model of ALS induced by expressing mutant SOD1 (SOD1A4V). By monitoring the distribution of Ub in cells expressing SOD1A4V, we show that Ub is present at the earliest stages of SOD1A4V aggregation, and that cells containing SOD1A4V aggregates have greater ubiquitin-proteasome system (UPS) dysfunction. Furthermore, SOD1A4V aggregation is associated with the redistribution of Ub and depletion of the free Ub pool. Ubiquitomics analysis indicates that expression of SOD1A4V is associated with a shift of Ub to a pool of supersaturated proteins, including those associated with oxidative phosphorylation and metabolism, corresponding with altered mitochondrial morphology and function. Taken together, these results suggest that misfolded SOD1 contributes to UPS dysfunction and that Ub homeostasis is an important target for monitoring pathological changes in ALS.This article has an associated First Person interview with the first author of the paper.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Homeostase , Superóxido Dismutase-1/metabolismo , Ubiquitina/metabolismo , Esclerose Lateral Amiotrófica/etiologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Superóxido Dismutase-1/genética
6.
Proc Natl Acad Sci U S A ; 114(20): E3935-E3943, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28396410

RESUMO

Amyotrophic lateral sclerosis (ALS) is a heterogeneous degenerative motor neuron disease linked to numerous genetic mutations in apparently unrelated proteins. These proteins, including SOD1, TDP-43, and FUS, are highly aggregation-prone and form a variety of intracellular inclusion bodies that are characteristic of different neuropathological subtypes of the disease. Contained within these inclusions are a variety of proteins that do not share obvious characteristics other than coaggregation. However, recent evidence from other neurodegenerative disorders suggests that disease-affected biochemical pathways can be characterized by the presence of proteins that are supersaturated, with cellular concentrations significantly greater than their solubilities. Here, we show that the proteins that form inclusions of mutant SOD1, TDP-43, and FUS are not merely a subset of the native interaction partners of these three proteins, which are themselves supersaturated. To explain the presence of coaggregating proteins in inclusions in the brain and spinal cord, we observe that they have an average supersaturation even greater than the average supersaturation of the native interaction partners in motor neurons, but not when scores are generated from an average of other human tissues. These results suggest that inclusion bodies in various forms of ALS result from a set of proteins that are metastable in motor neurons, and thus prone to aggregation upon a disease-related progressive collapse of protein homeostasis in this specific setting.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Agregação Patológica de Proteínas/fisiopatologia , Nervos Espinhais/fisiopatologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/fisiologia , Neurônios Motores/metabolismo , Mutação , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/metabolismo , Dobramento de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Nervos Espinhais/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
7.
Breast Cancer Res ; 21(1): 43, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898150

RESUMO

BACKGROUND: The oncogenic receptor tyrosine kinase (RTK) ERBB2 is known to dimerize with other EGFR family members, particularly ERBB3, through which it potently activates PI3K signalling. Antibody-mediated inhibition of this ERBB2/ERBB3/PI3K axis has been a cornerstone of treatment for ERBB2-amplified breast cancer patients for two decades. However, the lack of response and the rapid onset of relapse in many patients now question the assumption that the ERBB2/ERBB3 heterodimer is the sole relevant effector target of these therapies. METHODS: Through a systematic protein-protein interaction screen, we have identified and validated alternative RTKs that interact with ERBB2. Using quantitative readouts of signalling pathway activation and cell proliferation, we have examined their influence upon the mechanism of trastuzumab- and pertuzumab-mediated inhibition of cell growth in ERBB2-amplified breast cancer cell lines and a patient-derived xenograft model. RESULTS: We now demonstrate that inactivation of ERBB3/PI3K by these therapeutic antibodies is insufficient to inhibit the growth of ERBB2-amplified breast cancer cells. Instead, we show extensive promiscuity between ERBB2 and an array of RTKs from outside of the EGFR family. Paradoxically, pertuzumab also acts as an artificial ligand to promote ERBB2 activation and ERK signalling, through allosteric activation by a subset of these non-canonical RTKs. However, this unexpected activation mechanism also increases the sensitivity of the receptor network to the ERBB2 kinase inhibitor lapatinib, which in combination with pertuzumab, displays a synergistic effect in single-agent resistant cell lines and PDX models. CONCLUSIONS: The interaction of ERBB2 with a number of non-canonical RTKs activates a compensatory signalling response following treatment with pertuzumab, although a counter-intuitive combination of ERBB2 antibody therapy and a kinase inhibitor can overcome this innate therapeutic resistance.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Fosforilação , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biol Chem ; 291(41): 21571-21583, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27531744

RESUMO

SgK269/PEAK1 is a pseudokinase and scaffolding protein that plays a critical role in regulating growth factor receptor signal output and is implicated in the progression of several cancers, including those of the breast, colon, and pancreas. SgK269 is structurally related to SgK223, a human pseudokinase that also functions as a scaffold but recruits a distinct repertoire of signaling proteins compared with SgK269. Structural similarities between SgK269 and SgK223 include a predicted α-helical region (designated CH) immediately preceding the conserved C-terminal pseudokinase (PK) domain. Structure-function analyses of SgK269 in MCF-10A mammary epithelial cells demonstrated a critical role for the CH and PK regions in promoting cell migration and Stat3 activation. Characterization of the SgK269 "interactome" by mass spectrometry-based proteomics identified SgK223 as a novel binding partner, and association of SgK269 with SgK223 in cells was dependent on the presence of the CH and PK domains of both pseudokinases. Homotypic association of SgK269 and SgK223 was also demonstrated and exhibited the same structural requirements. Further analysis using pulldowns and size-exclusion chromatography underscored the critical role of the CH region in SgK269/SgK223 association. Importantly, although SgK269 bridged SgK223 to Grb2, it was unable to activate Stat3 or efficiently enhance migration in SgK223 knock-out cells generated by CRISPR/Cas9. These results reveal previously unrecognized interplay between two oncogenic scaffolds and demonstrate a novel signaling mechanism for pseudokinases whereby homotypic and heterotypic association is used to assemble scaffolding complexes with distinct binding properties and hence qualitatively regulate signal output.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular/fisiologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem Celular , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Domínios Proteicos , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
9.
Biochem J ; 473(22): 4083-4101, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27834739

RESUMO

Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Proteômica/métodos , Especificidade por Substrato , Ubiquitina/metabolismo
10.
J Neurochem ; 137(4): 489-505, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26872075

RESUMO

A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-ß, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteólise , Deficiências na Proteostase/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Mapas de Interação de Proteínas/fisiologia , Deficiências na Proteostase/patologia , Ubiquitina/metabolismo
11.
EMBO J ; 31(11): 2629-47, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22510884

RESUMO

The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild-type B-Raf (B-Raf(wt)) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B-Raf(wt) and several of its gain-of-function (g-o-f) mutants. In contrast, the B-Raf(V600E), B-Raf(insT) and B-Raf(G469A) oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B-Raf(wt), B-Raf(V600E) displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B-Raf(wt) and Raf-1(wt) mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf-1 by kinase-inactivated B-Raf require an intact DIF. Surprisingly, the B-Raf DIF is not required for dimerisation between Raf-1 and B-Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two-step mechanism consisting of dimerisation and DIF-dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras-driven Raf-mediated (paradoxical) ERK activation.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Multimerização Proteica/fisiologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Benzenossulfonatos/farmacologia , Células CACO-2 , Células HCT116 , Células HT29 , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Niacinamida/análogos & derivados , Compostos de Fenilureia , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/efeitos dos fármacos , Piridinas/farmacologia , Sorafenibe , Sulfonamidas/farmacologia
12.
Genes Cells ; 20(1): 1-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25307957

RESUMO

The use of third-generation lentiviral vectors is now commonplace in most areas of basic biology. These systems provide a fast, efficient means for modulating gene expression, but experimental design needs to be carefully considered to minimize potential artefacts arising from off-target effects and other confounding factors. This review offers a starting point for those new to lentiviral-based vector systems, addressing the main issues involved with the use of lentiviral systems in vitro and outlines considerations which should be taken into account during experimental design. Factors such as selecting an appropriate system and controls, and practical titration of viral transduction are important considerations for experimental design. We also briefly describe some of the more recent advances in genome editing technology. TALENs and CRISPRs offer an alternative to lentivirus, providing endogenous gene editing with reduced off-target effects often at the expense of efficiency.


Assuntos
Vetores Genéticos , Lentivirus/genética , Transformação Genética , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desoxirribonucleases/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Marcação de Genes/métodos , Mamíferos , Regiões Promotoras Genéticas , Projetos de Pesquisa , Transdução Genética/métodos , Dedos de Zinco
13.
Biochem Soc Trans ; 44(5): 1265-1271, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911708

RESUMO

Primary cilia form at the surface of most vertebrate cell types, where they are essential signalling antennae for signal transduction pathways important for development and cancer, including Hedgehog. The importance of primary cilia in development is clearly demonstrated by numerous disorders (known as ciliopathies) associated with disrupted cilia formation (ciliogenesis). Recent advances describing functional regulators of the primary cilium highlight an emerging role for the ubiquitin-proteasome system (UPS) as a key regulator of ciliogenesis. Although there are well-documented examples of E3 ubiquitin ligases and deubiquitases in the regulation of cilia proteins, many putative components remain unvalidated. This review explores current understanding of how the UPS influences primary cilia formation, and also how recent screen data have identified more putative regulators of the UPS. Emerging research has identified many promising leads in the search for regulators of this important organelle and may identify potential novel therapeutic targets for intervention in cancer and other disease contexts.


Assuntos
Cílios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Animais , Humanos , Modelos Biológicos , Ligação Proteica , Proteoma/metabolismo , Ubiquitinação
14.
Biochem J ; 459(1): 193-203, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24438055

RESUMO

The hPXR (human pregnane X receptor), a major chemical toxin sensor, is a ligand-induced transcription factor activated by various xenobiotics and toxins, resulting in the transcriptional up-regulation of detoxifying enzymes. To date, little is known about the upstream regulation of hPXR. Using MS analysis and a kinome-wide siRNA screen, we report that the E3 ligase UBR5 (ubiquitin protein ligase E3 component n-recognin 5) and DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2) regulate hPXR stability. UBR5 knockdown resulted in accumulation of cellular hPXR and a concomitant increase in hPXR activity, whereas the rescue of UBR5 knockdown decreased the cellular hPXR level and activity. Importantly, UBR5 exerted its effect in concert with the serine/threonine kinase DYRK2, as the knockdown of DYRK2 phenocopied UBR5 knockdown. hPXR was shown to be a substrate for DYRK2, and DYRK2-dependent phosphorylation of hPXR facilitated its subsequent ubiquitination by UBR5. This is the first report of the post-translational regulation of hPXR via phosphorylation-facilitated ubiquitination by DYRK2 and UBR5. The results of the present study reveal the role of the ubiquitin-proteasomal pathway in modulating hPXR activity and indicate that pharmacological inhibitors of the ubiquitin-proteasomal pathway that regulate hPXR stability may negatively affect treatment outcome from unintended hPXR-mediated drug-drug interactions.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Receptores de Esteroides/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Células Cultivadas , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Receptor de Pregnano X , Estabilidade Proteica , Receptores de Esteroides/química , Ubiquitinação/fisiologia , Quinases Dyrk
15.
Sci Rep ; 14(1): 13844, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879591

RESUMO

Disrupted proteome homeostasis (proteostasis) in amyotrophic lateral sclerosis (ALS) has been a major focus of research in the past two decades. However, the proteostasis processes that become disturbed in ALS are not fully understood. Obtaining more detailed knowledge of proteostasis disruption in association with different ALS-causing mutations will improve our understanding of ALS pathophysiology and may identify novel therapeutic targets and strategies for ALS patients. Here we describe the development and use of a novel high-content analysis (HCA) assay to investigate proteostasis disturbances caused by the expression of several ALS-causing gene variants. This assay involves the use of conformationally-destabilised mutants of firefly luciferase (Fluc) to examine protein folding/re-folding capacity in NSC-34 cells expressing ALS-associated mutations in the genes encoding superoxide dismutase-1 (SOD1A4V) and cyclin F (CCNFS621G). We demonstrate that these Fluc isoforms can be used in high-throughput format to report on reductions in the activity of the chaperone network that result from the expression of SOD1A4V, providing multiplexed information at single-cell resolution. In addition to SOD1A4V and CCNFS621G, NSC-34 models of ALS-associated TDP-43, FUS, UBQLN2, OPTN, VCP and VAPB mutants were generated that could be screened using this assay in future work. For ALS-associated mutant proteins that do cause reductions in protein quality control capacity, such as SOD1A4V, this assay has potential to be applied in drug screening studies to identify candidate compounds that can ameliorate this deficiency.


Assuntos
Esclerose Lateral Amiotrófica , Mutação , Dobramento de Proteína , Proteostase , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Linhagem Celular , Camundongos , Animais
16.
J Biol Chem ; 286(27): 24467-75, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21606492

RESUMO

Tumor overexpression of urokinase-type plasminogen activator (uPA) and its specific inhibitor SerpinE1 (plasminogen activator inhibitor type-1) correlates with poor prognosis and increased metastatic potential. Conversely, tumor expression of uPA and another specific inhibitor, SerpinB2 (plasminogen activator inhibitor type-2), are associated with favorable outcome and relapse-free survival. It is not known how overexpression of these uPA inhibitors results in such disparate outcomes. A possible explanation may be related to the presence of a proposed low density lipoprotein receptor (LDLR)-binding motif in SerpinE1 responsible for mitogenic signaling via ERK that is absent in SerpinB2. We now show that complementation of such a LDLR-binding motif in SerpinB2 by mutagenesis of two key residues enabled high affinity binding to very LDLR (VLDLR). Furthermore, the VLDLR-binding SerpinB2 form behaved in a manner indistinguishable from SerpinE1 in terms of enhanced uPA-SerpinB2 complex endocytosis and subsequent ERK phosphorylation and cell proliferation; that is, the introduction of the LDLR-binding motif to SerpinB2 was necessary and sufficient to allow it to acquire characteristics of SerpinE1 associated with malignancy. In conclusion, this study defines the structural elements underlying the distinct interactions of SerpinE1 versus SerpinB2 with endocytic receptors and how differential VLDLR binding impacts on downstream cellular behavior. This has clear relevance to understanding the paradoxical disease outcomes associated with overexpression of these serpins in cancer.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Intervalo Livre de Doença , Endocitose/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/mortalidade , Fosforilação/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 2 de Ativador de Plasminogênio/genética , Taxa de Sobrevida
17.
Prog Biophys Mol Biol ; 174: 3-27, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716729

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteoma , Proteostase
18.
J Biol Chem ; 285(16): 11800-9, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20167605

RESUMO

Fully differentiated mature smooth muscle cells (SMCs) are characterized by the presence of a unique repertoire of smooth muscle-specific proteins. Although previous studies have shown myocardin to be a critical transcription factor for stimulating expression of smooth muscle-specific genes, the mechanisms regulating myocardin activity are still poorly understood. We used a yeast two-hybrid screen with myocardin as bait to search for factors that may regulate the transcriptional activity of the myocardin. From this screen we identified a HECT domain-containing protein UBR5 (ubiquitin protein ligase E3 component n-recognin 5) as a myocardin-binding protein. Previous studies have shown that HECT domain-containing proteins are ubiquitin E3 ligases that play an important role in protein degradation. UBR5 has, however, also been shown to regulate transcription independent of its E3 ligase activity. In the current study we demonstrated that UBR5 localized in the nuclei of SMCs and forms a complex with myocardin in vivo and in vitro. We also show that UBR5 specifically enhanced trans-activation of smooth muscle-specific promoters by the myocardin family of proteins. In addition, UBR5 significantly augmented the ability of myocardin to induce expression of endogenous SMC marker genes independent on its E3 ligase function. Conversely, depletion of endogenous UBR5 by small interfering RNA in fibroblast cells attenuated myocardin-induced smooth muscle-specific gene expression, and UBR5 knockdown in SMCs resulted in down-regulation of smooth muscle-specific genes. Furthermore, we found that UBR5 can attenuate myocardin protein degradation resulting in increased myocardin protein expression without affecting myocardin mRNA expression. The effects of UBR5 on myocardin requires only the HECT and UBR1 domains of UBR5. This study reveals an unexpected role for the ubiquitin E3 ligase UBR5 as an activator of smooth muscle differentiation through its ability to stabilize myocardin protein.


Assuntos
Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Linhagem Celular , Chlorocebus aethiops , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Estabilidade Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transativadores/genética , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
20.
PLoS One ; 15(11): e0242133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166352

RESUMO

Cancer research in the news is often associated with sensationalised and inaccurate reporting, which may give rise to false hopes and expectations. The role of study selection for cancer-related news stories is an important but less commonly acknowledged issue, as the outcomes of primary research are generally less reliable than those of meta-analyses and systematic reviews. Few studies have investigated the quality of research that makes the news and no previous analyses of the proportions of primary and secondary research in the news have been found in the literature. We analysed distribution of study types, research sources, reporting quality, gender bias, and national bias in online news reports by four major news outlets in USA, UK and Australia over six-months. We measured significant variation in reporting quality and observed biases in many aspects of cancer research reporting, including the types of study selected for coverage, the spectrum of cancer types, gender of scientists, and geographical source of research represented. We discuss the implications of these findings for guiding accurate, contextual reporting of cancer research, which is critical in helping the public understand complex science, appreciate the outcomes of publicly-funded research, maintain trust, and assist informed decision-making. The striking gender bias observed may compromise high-quality coverage of research by limiting diversity of opinion, reinforces stereotypes and skews public visibility and recognition towards male scientists. Our findings provide useful guidelines for scientists and journalists alike to consider in providing the most informative and accurate reporting of research.


Assuntos
Pesquisa Biomédica , Meios de Comunicação de Massa/normas , Neoplasias/psicologia , Publicações Periódicas como Assunto/normas , Viés , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa