Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(11): 8965-8972, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436498

RESUMO

The development of suitable protection against laser radiation has proven challenging due to the lack of predictive models. The purpose of this article is to exclude the existing drawback by creating a universal strategy based on correlations between experimental and theoretical data characterizing the nonlinear optical properties of absorbers, for which a series of low-symmetry penta(chloro)cyclotriphosphazene-substituted monophthalocyanines was chosen. To search for correlations on a small series of dyes, we used the advanced algorithm CORRELATO, which has been proven to construct even the most unusual relationships demonstrated in our previous works. Due to the reducing symmetry of molecules, large values of the nonlinear absorption coefficient (more than 3000 cm GW-1) and, as a result, wide dynamic ranges (up to 630) with a high degree of attenuation of nanosecond laser radiation (10-20 times) were achieved. The use of the finite-field DFT method has allowed the calculation of dipole moments, polarizabilities and hyperpolarizabilities. The numerical data obtained during the calculations were used in correlations of theory vs. experiment to derive mathematical expressions (inequalities) to assess the effectiveness of absorbers in limiting the power of laser radiation.

2.
Anal Biochem ; 598: 113710, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268126

RESUMO

Biopolymer composites based on two types of chitosan (chitosan succinate and low-molecular weight chitosan) with single-walled carbon nanotubes (SWCNT) were created by laser printing. SWCNT have good dispersibility in chitosan solutions and therefore, can form relatively homogeneous films that was shown in scanning electron microscopy images. For the studies film composites were formed under the action of laser radiation on aqueous dispersion media. Study of the nonlinear optical process during the interaction of laser radiation with a disperse media has shown that low-molecular chitosan has a large nonlinear absorption coefficient of 17 cm/GW, while the addition of SWCNT lead to a significant increase up to 902 cm/GW. The threshold intensity for these samples was 5.5 MW/cm2 with nanotubes. If intensity exceeds the threshold value, nonlinear effects occur, which, in turn, lead to the transformation of a liquid into a solid phase. Characterization of films by FTIR and Raman spectroscopy indicated arising molecular interactions between chitosan and SWCNT detected as a small frequency shift and a change in the shape of radial breathing mode (RBM). The results indicate the possibility using aqueous dispersion media based on chitosan and SWCNT to create three-dimensional films and scaffolds for tissue engineering by laser printing.


Assuntos
Biopolímeros/química , Quitosana/química , Lasers , Nanotubos de Carbono/química , Impressão Tridimensional , Fenômenos Ópticos , Espectrofotometria Infravermelho
3.
Phys Chem Chem Phys ; 18(23): 15964-71, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27241278

RESUMO

The possibility of developing new advanced optical limiters of laser radiation at 532 nm with low limiting thresholds has been demonstrated on thermally stable phthalocyanine J-type dimeric complexes of Mg, Zn, Cu, Ni, and Co. A new "threshold" model based on radiative transfer phenomena in nonlinear optical media was suggested for the exact definition of nonlinear absorption coefficient ß and optical limiting threshold Ic. This model allows the determination of the optical characteristics of the limiter in the same active material with layers of different thicknesses, as well as the use of different parameters of laser radiation, such as cross-sectional spatial profiles of the laser beam and shapes of the laser pulse over time. The maximum value of the nonlinear absorption coefficient (ß = 360 cm GW(-1)) and the lowest limiting threshold (Ic = 0.03 J cm(-2)) were estimated for a J-type zinc phthalocyanine dimer.

4.
Membranes (Basel) ; 13(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37103830

RESUMO

Currently, the development of stable and antithrombogenic coatings for cardiovascular implants is socially important. This is especially important for coatings exposed to high shear stress from flowing blood, such as those on ventricular assist devices. A method of layer-by-layer formation of nanocomposite coatings based on multi-walled carbon nanotubes (MWCNT) in a collagen matrix is proposed. A reversible microfluidic device with a wide range of flow shear stresses has been developed for hemodynamic experiments. The dependence of the resistance on the presence of a cross-linking agent for collagen chains in the composition of the coating was demonstrated. Optical profilometry determined that collagen/c-MWCNT and collagen/c-MWCNT/glutaraldehyde coatings obtained sufficiently high resistance to high shear stress flow. However, the collagen/c-MWCNT/glutaraldehyde coating was almost twice as resistant to a phosphate-buffered solution flow. A reversible microfluidic device made it possible to assess the level of thrombogenicity of the coatings by the level of blood albumin protein adhesion to the coatings. Raman spectroscopy demonstrated that the adhesion of albumin to collagen/c-MWCNT and collagen/c-MWCNT/glutaraldehyde coatings is 1.7 and 1.4 times lower than the adhesion of protein to a titanium surface, widely used for ventricular assist devices. Scanning electron microscopy and energy dispersive spectroscopy determined that blood protein was least detected on the collagen/c-MWCNT coating, which contained no cross-linking agent, including in comparison with the titanium surface. Thus, a reversible microfluidic device is suitable for preliminary testing of the resistance and thrombogenicity of various coatings and membranes, and nanocomposite coatings based on collagen and c-MWCNT are suitable candidates for the development of cardiovascular devices.

5.
ACS Omega ; 7(32): 28658-28666, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990419

RESUMO

Laser-power-limiting devices play a predominant role in photonics because of their potential for protecting human eyes and optical devices that are sensitive to intense laser beams. This paper describes a new methodology for predicting the efficiency of optical limiting based on electric-field-induced changes in absorption spectra calculated with the TDDFT quantum-chemical method. Analytical equations are derived to evaluate the optical thresholds and speed of switching on, the dynamic range, and the degree of nonlinear attenuation of the radiation fluxes for the case of two-photon absorption. Thus, the researcher does not need to conduct costly experiments to evaluate the suitability of nonlinear absorbers for the creation of optical limiters. The possibility of developing a forecasting model is demonstrated by an example of a series of stable slipped-cofacial phthalocyanine J-type dimers, which were synthesized and investigated previously.

6.
Bioengineering (Basel) ; 9(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35735481

RESUMO

Laser soldering is a current biophotonic technique for the surgical recovery of the integrity of soft tissues. This technology involves the use of a device providing laser exposure to the cut edges of the wound with a solder applied. The proposed solder consisted of an aqueous dispersion of biopolymer albumin (25 wt.%), single-walled carbon nanotubes (0.1 wt.%) and exogenous indocyanine green chromophore (0.1 wt.%). Under laser exposure, the dispersion transforms into a nanocomposite due to the absorption of radiation and its conversion into heat. The nanocomposite is a frame structure of carbon nanotubes in a biopolymer matrix, which provides adhesion of the wound edges and the formation of a strong laser weld. A new laser device based on a diode laser (808 nm) has been developed to implement the method. The device has a temperature feedback system based on a bolometric infrared matrix sensor. The system determines the hottest area of the laser weld and adjusts the current supplied to the diode laser to maintain the preset laser heating temperature. The laser soldering technology made it possible to heal linear defects (cuts) in the skin of laboratory animals (rabbits) without the formation of a fibrotic scar compared to the control (suture material). The combined use of a biopolymer nanocomposite solder and a laser device made it possible to achieve a tensile strength of the laser welds of 4 ± 0.4 MPa. The results of the experiment demonstrated that the addition of single-walled carbon nanotubes to the solder composition leads to an increase in the ultimate tensile strength of the laser welds by 80%. The analysis of regenerative and morphological features in the early stages (1-3 days) after surgery revealed small wound gaps, a decrease in inflammation, the absence of microcirculatory disorders and an earlier epithelization of laser welds compared to the control. On the 10th day after the surgical operation, the laser weld was characterized by a thin cosmetic scar and a continuous epidermis covering the defect. An immunohistochemical analysis proved the absence of myofibroblasts in the area of the laser welds.

7.
Nanomaterials (Basel) ; 12(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014677

RESUMO

A technology for the formation and bonding with a substrate of hybrid carbon nanostructures from single-walled carbon nanotubes (SWCNT) and reduced graphene oxide (rGO) by laser radiation is proposed. Molecular dynamics modeling by the real-time time-dependent density functional tight-binding (TD-DFTB) method made it possible to reveal the mechanism of field emission centers formation in carbon nanostructures layers. Laser radiation stimulates the formation of graphene-nanotube covalent contacts and also induces a dipole moment of hybrid nanostructures, which ensures their orientation along the force lines of the radiation field. The main mechanical and emission characteristics of the formed hybrid nanostructures were determined. By Raman spectroscopy, the effect of laser radiation energy on the defectiveness of all types of layers formed from nanostructures was determined. Laser exposure increased the hardness of all samples more than twice. Maximum hardness was obtained for hybrid nanostructure with a buffer layer (bl) of rGO and the main layer of SWCNT-rGO(bl)-SWCNT and was 54.4 GPa. In addition, the adhesion of rGO to the substrate and electron transport between the substrate and rGO(bl)-SWCNT increased. The rGO(bl)-SWCNT cathode with an area of ~1 mm2 showed a field emission current density of 562 mA/cm2 and stability for 9 h at a current of 1 mA. The developed technology for the formation of hybrid nanostructures can be used both to create high-performance and stable field emission cathodes and in other applications where nanomaterials coating with good adhesion, strength, and electrical conductivity is required.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa