Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Immunol ; 358: 104224, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068914

RESUMO

Type 1 Diabetes (T1D) is an autoimmune disease marked by direct elimination of insulin-producing ß cells by autoreactive T effectors. Recent T1D clinical trials utilizing autologous Tregs transfers to restore immune balance and improve disease has prompted us to design a novel Tregs-based antigen-specific T1D immunotherapy. We engineered a Chimeric Antigen Receptor (CAR) expressing a single-chain Fv recognizing the human pancreatic endocrine marker, HPi2. Human T cells, transduced with the resultant HPi2-CAR, proliferated and amplified Granzyme B accumulation when co-cultured with human, but not mouse ß cells. Furthermore, following exposure of HPi2-CAR transduced cells to islets, CD8+ lymphocytes demonstrated enhanced CD107a (LAMP-1) expression, while CD4+ cells produced increased levels of IL-2. HPi2-CAR Tregs failed to maintain expansion due to a persistent tonic signaling from the CAR engagement to unexpectantly HPi2 antigen present on Tregs. Overall, we show lack of functionality of HPi2-CAR and highlight the importance of careful selection of CAR recognition driver for the sustainable activity and expandability of engineered T cells.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Protaminas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Humanos , Tolerância Imunológica/imunologia , Imunoterapia Adotiva/métodos , Ilhotas Pancreáticas , Pâncreas/citologia , Pâncreas/metabolismo , Protaminas/metabolismo , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo
2.
J Immunol ; 199(12): 3991-4000, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109122

RESUMO

Type 1 diabetes (T1D) has a strong genetic component. The insulin dependent diabetes (Idd)22 locus was identified in crosses of T1D-susceptible NOD mice with the strongly T1D-resistant ALR strain. The NODcALR-(D8Mit293-D8Mit137)/Mx (NOD-Idd22) recombinant congenic mouse strain was generated in which NOD mice carry the full Idd22 confidence interval. NOD-Idd22 mice exhibit almost complete protection from spontaneous T1D and a significant reduction in insulitis. Our goal was to unravel the mode of Idd22-based protection using in vivo and in vitro models. We determined that Idd22 did not impact immune cell diabetogenicity or ß cell resistance to cytotoxicity in vitro. However, NOD-Idd22 mice were highly protected against adoptive transfer of T1D. Transferred CTLs trafficked to the pancreatic lymph node and proliferated to the same extent in NOD and NOD-Idd22 mice, yet the accumulation of pathogenic CTLs in the islets was significantly reduced in NOD-Idd22 mice, correlating with disease resistance. Pancreatic endothelial cells from NOD-Idd22 animals expressed lower levels of adhesion molecules, even in response to inflammatory stimuli. Lower adhesion molecule expression resulted in weaker adherence of T cells to NOD-Idd22 endothelium compared with NOD-derived endothelium. Taken together, these results provide evidence that Idd22 regulates the ability of ß cell-autoreactive T cells to traffic into the pancreatic islets and may represent a new target for pharmaceutical intervention to potentially prevent T1D.


Assuntos
Quimiotaxia de Leucócito/genética , Diabetes Mellitus Tipo 1/genética , Ilhotas Pancreáticas/patologia , Linfócitos T Citotóxicos/patologia , Transferência Adotiva , Animais , Autoimunidade/genética , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Quimiotaxia de Leucócito/fisiologia , Cruzamentos Genéticos , Testes Imunológicos de Citotoxicidade , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Resistência à Doença , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Camundongos Endogâmicos , Camundongos SCID , Organismos Livres de Patógenos Específicos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante
3.
Mol Ther ; 26(1): 184-198, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28988715

RESUMO

Type 1 diabetes (T1D) is characterized by massive destruction of insulin-producing ß cells by autoreactive T lymphocytes, arising via defective immune tolerance. Therefore, effective anti-T1D therapeutics should combine autoimmunity-preventing and insulin production-restoring properties. We constructed a cell-permeable PDX1-FOXP3-TAT fusion protein (FP) composed of two transcription factors: forkhead box P3 (FOXP3), the master regulator of differentiation and functioning of self-tolerance-promoting Tregs, and pancreatic duodenal homeobox-1 (PDX1), the crucial factor supporting ß cell development and maintenance. The FP was tested in vitro and in a non-obese diabetic mouse T1D model. In vitro, FP converted naive CD4+ T cells into a functional "Treg-like" subset, which suppressed cytokine secretion, downregulated antigen-specific responses, and curbed viability of diabetogenic effector cells. In hepatic stem-like cells, FP potentiated endocrine transdifferentiation, inducing expression of Insulin2 and other ß lineage-specific genes. In vivo, FP administration to chronically diabetic mice triggered (1) a significant elevation of insulin and C-peptide levels, (2) the formation of insulin-containing cell clusters in livers, and (3) a systemic anti-inflammatory shift (higher Foxp3+CD4+CD25+ T cell frequencies, elevated rates of IL-10-producing cells, and reduced rates of IFN-γ-secreting cells). Overall, in accordance with its design, PDX1-FOXP3-TAT FP delivered both Treg-stabilizing anti-autoimmune and de novo insulin-producing effects, proving its anti-T1D therapeutic potential.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Secreção de Insulina , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transativadores/metabolismo , Animais , Microambiente Celular/imunologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/genética , Hepatócitos/metabolismo , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fenótipo , Ligação Proteica , Proteínas Recombinantes de Fusão , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transativadores/genética
4.
J Immunol ; 196(4): 1495-506, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773144

RESUMO

Ag-specific activation of T cells is an essential process in the control of effector immune responses. Defects in T cell activation, particularly in the costimulation step, have been associated with many autoimmune conditions, including type 1 diabetes (T1D). Recently, we demonstrated that the phenotype of impaired negative costimulation, due to reduced levels of V-set domain-containing T cell activation inhibitor 1 (VTCN1) protein on APCs, is shared between diabetes-susceptible NOD mice and human T1D patients. In this study, we show that a similar process takes place in the target organ, as both α and ß cells within pancreatic islets gradually lose their VTCN1 protein during autoimmune diabetes development despite upregulation of the VTCN1 gene. Diminishment of functional islet cells' VTCN1 is caused by the active proteolysis by metalloproteinase N-arginine dibasic convertase 1 (NRD1) and leads to the significant induction of proliferation and cytokine production by diabetogenic T cells. Inhibition of NRD1 activity, alternatively, stabilizes VTCN1 and dulls the anti-islet T cell responses. Therefore, we suggest a general endogenous mechanism of defective VTCN1 negative costimulation, which affects both lymphoid and peripheral target tissues during T1D progression and results in aggressive anti-islet T cell responses. This mechanism is tied to upregulation of NRD1 expression and likely acts in two synergistic proteolytic modes: cell-intrinsic intracellular and cell-extrinsic systemic. Our results highlight an importance of VTCN1 stabilization on cell surfaces for the restoration of altered balance of immune control during T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia , Animais , Apresentação de Antígeno , Citocinas/biossíntese , Diabetes Mellitus Tipo 1/fisiopatologia , Células Secretoras de Glucagon/imunologia , Humanos , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/metabolismo , Ativação Linfocitária , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos Endogâmicos NOD , Proteólise , Linfócitos T/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2862-2870, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28746835

RESUMO

Ataxia telangiectasia (AT) is a progressive multisystem autosomal recessive disorder caused by mutations in the AT-mutated (ATM) gene. Early onset AT in children is characterized by cerebellar degeneration, leading to motor impairment. Lung disease and cancer are the two most common causes of death in AT patients. Accelerated thymic involution may contribute to the cancer, and recurrent and/or chronic respiratory infections may be a contributing factor to lung disease in AT. AT patients have fertility issues, are highly sensitive to ionizing radiation and they present oculocutaneous telangiectasia. Current treatments only slightly ameliorate disease symptoms; therapy that alters or reverses the course of the disease has not yet been discovered. Previously, we have shown that ATM-/- pigs, a novel model of AT, present with a loss of Purkinje cells, altered cerebellar cytoarchitecture and motor coordination deficits. ATM-/- porcine model not only recapitulates the neurological phenotype, but also other multifaceted clinical features of the human disease. Our current study shows that ATM-/- female pigs are infertile, with anatomical and functional signs of an immature reproductive system. Both male and female ATM-/- pigs show abnormal thymus structure with decreased cell cycle and apoptosis markers in the gland. Moreover, ATM-/- pigs have an altered immune system with decreased CD8+ and increased natural killer and CD4+CD8+ double-positive cells. Nevertheless, ATM-/- pigs manifest a deficient IgG response after a viral infection. Based on the neurological and peripheral phenotypes, the ATM-/- pig is a novel genetic model that may be used for therapeutic assessments and to identify pathomechanisms of this disease.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Modelos Animais de Doenças , Suínos , Animais , Animais Geneticamente Modificados , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Feminino , Humanos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Suínos/genética , Suínos/metabolismo
6.
Front Endocrinol (Lausanne) ; 12: 737276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858326

RESUMO

Type 1 diabetes (T1D) is a disease that arises due to complex immunogenetic mechanisms. Key cell-cell interactions involved in the pathogenesis of T1D are activation of autoreactive T cells by dendritic cells (DC), migration of T cells across endothelial cells (EC) lining capillary walls into the islets of Langerhans, interaction of T cells with macrophages in the islets, and killing of ß-cells by autoreactive CD8+ T cells. Overall, pathogenic cell-cell interactions are likely regulated by the individual's collection of genetic T1D-risk variants. To accurately model the role of genetics, it is essential to build systems to interrogate single candidate genes in isolation during the interactions of cells that are essential for disease development. However, obtaining single-donor matched cells relevant to T1D is a challenge. Sourcing these genetic variants from human induced pluripotent stem cells (iPSC) avoids this limitation. Herein, we have differentiated iPSC from one donor into DC, macrophages, EC, and ß-cells. Additionally, we also engineered T cell avatars from the same donor to provide an in vitro platform to study genetic influences on these critical cellular interactions. This proof of concept demonstrates the ability to derive an isogenic system from a single donor to study these relevant cell-cell interactions. Our system constitutes an interdisciplinary approach with a controlled environment that provides a proof-of-concept for future studies to determine the role of disease alleles (e.g. IFIH1, PTPN22, SH2B3, TYK2) in regulating cell-cell interactions and cell-specific contributions to the pathogenesis of T1D.


Assuntos
Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/fisiologia , Humanos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia
7.
J Biol Chem ; 284(44): 30615-26, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19726693

RESUMO

Multiple sclerosis (MS) is a disease of the central nervous system with autoimmune etiology. Susceptibility to MS is linked to viral and bacterial infections. Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination. The splice variants of the single MBP gene are expressed in the oligodendrocytes of the central nervous system (classic MBP) and in the immune cells (Golli-MBPs). Our data suggest that persistent inflammation caused by environmental risk factors is a step to MS. We have discovered biochemical evidence suggesting the presence of the inflammatory proteolytic pathway leading to MS. The pathway involves the self-activated furin and PC2 proprotein convertases and membrane type-6 MMP (MT6-MMP/MMP-25) that is activated by furin/PC2. These events are followed by MMP-25 proteolysis of the Golli-MBP isoforms in the immune system cells and stimulation of the specific autoimmune T cell clones. It is likely that the passage of these autoimmune T cell clones through the disrupted blood-brain barrier to the brain and the recognition of neuronal, classic MBP causes inflammation leading to the further up-regulation of the activity of the multiple individual MMPs, the massive cleavage of MBP in the brain, demyelination, and MS. In addition to the cleavage of Golli-MBPs, MMP-25 proteolysis readily inactivates crystallin alphaB that is a suppressor of MS. These data suggest that MMP-25 plays an important role in MS pathology and that MMP-25, especially because of its restricted cell/tissue expression pattern and cell surface/lipid raft localization, is a promising drug target in MS.


Assuntos
Células Apresentadoras de Antígenos/patologia , Encéfalo/imunologia , Inflamação/enzimologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Esclerose Múltipla/etiologia , Pró-Proteína Convertases/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Encéfalo/enzimologia , Encéfalo/patologia , Proteínas Ligadas por GPI , Humanos , Inflamação/etiologia , Metaloproteinases da Matriz Associadas à Membrana/genética , Microdomínios da Membrana , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteína Básica da Mielina/metabolismo , Transdução de Sinais , Distribuição Tecidual , Regulação para Cima
8.
J Exp Med ; 197(5): 643-56, 2003 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-12615905

RESUMO

Activated insulin-specific CD8(+) T cells (IS-CD8(+) cells) home to the pancreas, destroy beta cells, and cause rapid diabetes upon transfer into diabetes-prone NOD mice. Surprisingly, they also cause diabetes in mouse strains that are free of preexistent inflammation. Thus, we hypothesized that islet-specific homing may be in part dependent on IS-CD8(+) cells' recognition of the cognate major histocompatibility complex (MHC)/peptide complexes presented by pancreatic endothelial cells, which acquire the antigen (insulin) from beta cells. In fact, islet-specific homing was abrogated in mice that lack MHC class I expression, or presentation of the specific peptide, or have impaired insulin secretion. Moreover, we found that IS-CD8(+) cells directly recognized pancreatic endothelial cells in islet organ cultures. Triggering of IS-CD8(+) cells' T cell receptor (TCR) led to activation of integrins expressed by these cells. In addition, chemokines, particularly SLC (CCL21), were also required for IS-CD8(+) cells' adhesion to endothelial monolayers and for successful homing in vivo. Thus, signaling through TCR and chemokine receptors work in concert to assure firm adhesion of T cells to the pancreatic endothelium. The antigen cross-presentation ability of endothelia may therefore contribute to the specificity of homing of activated T lymphocytes to the tissues where antigens are generated by other cell types.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Quimiotaxia , Endotélio Vascular/imunologia , Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Animais , Antígenos CD , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Adesão Celular/fisiologia , Células Cultivadas , Técnicas de Cultura , Diabetes Mellitus Experimental/imunologia , Endoglina , Endotélio Vascular/citologia , Feminino , Genes MHC Classe I , Transportador de Glucose Tipo 2 , Ilhotas Pancreáticas/irrigação sanguínea , Complexo Principal de Histocompatibilidade , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas de Transporte de Monossacarídeos/metabolismo , Pâncreas/irrigação sanguínea , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/metabolismo , Pâncreas/patologia , Peptídeos/metabolismo , Toxina Pertussis/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Superfície Celular , Receptores de Quimiocinas/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Front Immunol ; 10: 952, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118934

RESUMO

Aims: Reactive oxygen species (ROS) are critical in driving the onset of type 1 diabetes (T1D). Ablation of ROS derived from phagocytic NADPH oxidase 2 is protective against autoimmune diabetes in non-obese diabetic (NOD) mice. However, the mechanisms of NADPH oxidase 2-derived ROS in T1D pathogenesis need to be elucidated. Here, we have examined the role of Ncf1 (the regulatory subunit of NADPH oxidase 2) in dendritic cells (DC). Results:Ncf1-mutant DCs exhibit reduced ability to activate autoreactive CD8+ T cells despite no difference in co-stimulatory molecule expression or pro-inflammatory cytokine production. When provided with exogenous whole-protein antigen, Ncf1-mutant NOD DCs showed strong phagosome acidification and rapid antigen degradation, which lead to an absence of protein translocation into the cytoplasm and deficient antigenic peptide loading on MHC Class I molecules. Innovation: This study demonstrates that Ncf1 (p47phox) is required for activation and effector function of CD8+ T cells by acting both intrinsically within the T cell as well as within professional antigen presenting cells. Conclusion: ROS promote CD8+ T cell activation by facilitating autoantigen cross-presentation by DCs. ROS scavengers could potentially represent an important component of therapies aiming to disrupt autoantigen presentation and activation of CD8+ T cells in individuals at-risk for developing T1D.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Ativação Linfocitária/imunologia , NADPH Oxidases/imunologia , Animais , Autoimunidade/imunologia , Apresentação Cruzada/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Mutantes
10.
Cancer Res ; 66(12): 6258-63, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16778201

RESUMO

Neoplasms have developed strategies to protect themselves against the complement-mediated host immunity. Invasion- and metastasis-promoting membrane type-1 (MT1) matrix metalloproteinase (MMP) is strongly associated with many metastatic cancer types. The relative importance of the individual functions of MT1-MMP in metastasis was, however, unknown. We have now determined that the expression of murine MT1-MMP in murine melanoma B16F1 cells strongly increased the number of metastatic loci in the lungs of syngeneic C57BL/6 mice. In contrast, MT1-MMP did not affect the number of metastatic loci in complement-deficient C57BL/6-C3-/- mice. Our results indicated, for the first time, that the anticomplement activity of MT1-MMP played a significant role in promoting metastasis in vivo and determined the relative importance of the anticomplement activity in the total metastatic effect of this multifunctional proteolytic enzyme. We believe that our results shed additional light on the functions of MT1-MMP in cancer and clearly make this protease a promising drug target in metastatic malignancies.


Assuntos
Complemento C3/imunologia , Proteínas Inativadoras do Complemento/imunologia , Metaloproteinases da Matriz/imunologia , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/imunologia , Animais , Complemento C3/deficiência , Complemento C3/genética , Proteínas Inativadoras do Complemento/genética , Proteínas Inativadoras do Complemento/metabolismo , Fibrossarcoma/enzimologia , Fibrossarcoma/genética , Fibrossarcoma/imunologia , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Metaloproteinase 14 da Matriz , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz Associadas à Membrana , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Transfecção
11.
Cancer Res ; 66(5): 2716-24, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16510592

RESUMO

Estrogens have many cellular functions, including their interactions with estrogen receptors alpha and beta (ERalpha and ERbeta). Earlier, we determined that the estrogen-ER complex stimulates the transcriptional activity of the matrix metalloproteinase 26 (MMP-26) gene promoter. We then determined that ERbeta is susceptible to MMP-26 proteolysis whereas ERalpha is resistant to the protease. MMP-26 targets the NH(2)-terminal region of ERbeta coding for the divergent NH(2)-terminal A/B domain that is responsible for the ligand-independent transactivation function. As a result, MMP-26 proteolysis generates the COOH-terminal fragments of ERbeta. Immunohistochemical analysis of tissue microarrays derived from 121 cancer patients corroborated these data and revealed an inverse correlation between the ERalpha-dependent expression of MMP-26 and the levels of the intact ERbeta in breast carcinomas. MMP-26 is not expressed in normal mammary epithelium. The levels of MMP-26 are strongly up-regulated in ductal carcinoma in situ (DCIS). In the course of further disease progression through stages I to III, the expression of MMP-26 decreases. In contrast to many tumor-promoting MMPs, the expression of MMP-26 in DCIS correlated with a longer patient survival. Our data suggest the existence of an MMP-26-mediated intracellular pathway that targets ERbeta and that MMP-26, a novel and valuable cancer marker, contributes favorably to the survival of the ERalpha/beta-positive cohort of breast cancer patients.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma in Situ/metabolismo , Carcinoma Ductal de Mama/metabolismo , Receptor beta de Estrogênio/metabolismo , Metaloproteinases da Matriz/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Carcinoma in Situ/enzimologia , Carcinoma in Situ/patologia , Carcinoma Ductal de Mama/enzimologia , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Humanos , Metaloproteinases da Matriz Secretadas , Estadiamento de Neoplasias , Taxa de Sobrevida
12.
FASEB J ; 20(11): 1793-801, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16940151

RESUMO

It has been well established that invasion-promoting membrane type-1 matrix metalloproteinase (MT1-MMP), a multifunctional membrane-tethered enzyme, functions in cancer cells as a mediator of pericellular proteolysis and directly cleaves several cell surface receptors, including CD44. In this report, we confirm that adhesion of diabetogenic T cells promotes the activation of endogenous MT1-MMP. Activated protease then cleaves CD44 in adherent T cells. We have validated that the T cell CD44 receptor is critical for the adhesion of diabetogenic insulin-specific, CD8-positive, K(d)-restricted cells to the matrix as well as for the subsequent transmigration of the adherent T cells through the endothelium and homing of the transmigrated T cells into the pancreatic islets. We have determined that the inhibition of MT1-MMP by low dosages of AG3340 (a subnanomolar range hydroxamate inhibitor of MMPs that has been widely tested in cancer patients) inhibited both T cell MT1-MMP activity and MT1-MMP-dependent shedding of CD44, immobilized T cells on the endothelium, repressed the homing of diabetogenic T cells into the pancreatic islets, reduced insulitis and mononuclear cell infiltration, and promoted either the recovery or the rejuvenation of the functional insulin-producing beta cells in diabetic NOD mice with freshly developed type I diabetes (IDDM). We believe our data constitute a mechanistic and substantive rationale for clinical trials of selected MT1-MMP inhibitors in the therapy of IDDM in humans.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Animais , Adesão Celular , Sobrevivência Celular , Ativação Enzimática , Citometria de Fluxo , Receptores de Hialuronatos/fisiologia , Camundongos , Camundongos Endogâmicos NOD
13.
PLoS One ; 12(10): e0186426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023576

RESUMO

OBJECTIVE: Overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelium leads to arterial calcification in mice. The purpose of this study was to examine the effect of elevated endothelial TNAP on coronary atherosclerosis. In addition, we aimed to examine endogenous TNAP activity in human myocardium. APPROACH AND RESULTS: A vascular pattern of TNAP activity was observed in human non-failing, ischemic, and idiopathic dilated hearts (5 per group); no differences were noted between groups in this study. Endothelial overexpression of TNAP was achieved in mice harboring a homozygous recessive mutation in the low density lipoprotein receptor (whc allele) utilizing a Tie2-cre recombinase (WHC-eTNAP mice). WHC-eTNAP developed significant coronary artery calcification at baseline compared WHC controls (4312 vs 0µm2 alizarin red area, p<0.001). Eight weeks after induction of atherosclerosis, lipid deposition in the coronary arteries of WHC-eTNAP was increased compared to WHC controls (121633 vs 9330µm2 oil red O area, p<0.05). Coronary lesions in WHC-eTNAP mice exhibited intimal thickening, calcifications, foam cells, and necrotic cores. This was accompanied by the reduction in body weight and left ventricular ejection fraction (19.5 vs. 23.6g, p<0.01; 35% vs. 47%, p<0.05). In a placebo-controlled experiment under atherogenic conditions, pharmacological inhibition of TNAP in WHC-eTNAP mice by a specific inhibitor SBI-425 (30mg*kg-1*d-1, for 5 weeks) reduced coronary calcium (78838 vs.144622µm2) and lipids (30754 vs. 77317µm2); improved body weight (22.4 vs.18.8g) and ejection fraction (59 vs. 47%). The effects of SBI-425 were significant in the direct comparisons with placebo but disappeared after TNAP-negative placebo-treated group was included in the models as healthy controls. CONCLUSIONS: Endogenous TNAP activity is present in human cardiac tissues. TNAP overexpression in vascular endothelium in mice leads to an unusual course of coronary atherosclerosis, in which calcification precedes lipid deposition. The prevalence and significance of this mechanism in human atherosclerosis requires further investigations.


Assuntos
Fosfatase Alcalina/metabolismo , Doença da Artéria Coronariana/etiologia , Hiperlipoproteinemia Tipo II/patologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Animais , Análise Química do Sangue , Peso Corporal/efeitos dos fármacos , Calcificação Fisiológica , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Citocinas/sangue , Dieta Aterogênica , Modelos Animais de Doenças , Ecocardiografia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Inibidores Enzimáticos/farmacologia , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/enzimologia , Miocárdio/metabolismo , Miocárdio/patologia , Efeito Placebo , Receptores de LDL/genética , Função Ventricular Esquerda/efeitos dos fármacos
14.
Cancer Res ; 64(23): 8657-65, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15574774

RESUMO

Proteases exert control over cell behavior and affect many biological processes by making proteolytic modification of regulatory proteins. The purpose of this paper is to describe novel, important functions of matrix metalloproteinase (MMP)-26. alpha1-Antitrypsin (AAT) is a serpin, the primary function of which is to regulate the activity of neutrophil/leukocyte elastase. Insufficient antiprotease activity because of AAT deficiency in the lungs is a contributing factor to early-onset emphysema. We recently discovered that AAT is efficiently cleaved by a novel metalloproteinase, MMP-26, which exhibits an unconventional PH(81)CGVPD Cys switch motif and is autocatalytically activated in cells and tissues. An elevated expression of MMP-26 in macrophages and polymorphonuclear leukocytes supports the functional role of MMP-26 in the AAT cleavage and inflammation. We have demonstrated a direct functional link of MMP-26 expression with an estrogen dependency and confirmed the presence of the estrogen-response element in the MMP-26 promoter. Immunostaining of tumor cell lines and biopsy specimen microarrays confirmed the existence of the inverse correlations of MMP-26 and AAT in cells/tissues. An expression of MMP-26 in the estrogen-dependent neoplasms is likely to contribute to the inactivation of AAT, to the follow-up liberation of the Ser protease activity, and because of these biochemical events, to promote matrix destruction and malignant progression. In summary, we hypothesize that MMP-26, by cleaving and inactivating the AAT serpin, operates as a unique functional link that regulates a coordinated interplay between Ser and metalloproteinases in estrogen-dependent neoplasms.


Assuntos
Estrogênios/fisiologia , Metaloproteinases da Matriz/fisiologia , Neoplasias Hormônio-Dependentes/enzimologia , Neoplasias/enzimologia , alfa 1-Antitripsina/metabolismo , Linhagem Celular Tumoral , Humanos , Macrófagos/enzimologia , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/isolamento & purificação , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz Secretadas , Modelos Moleculares , Neoplasias/genética , Neutrófilos/enzimologia , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
15.
PLoS One ; 10(4): e0122980, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849628

RESUMO

Evidence suggests that stimulating apoptosis in malignant cells without inflicting collateral damage to the host's normal tissues is a promising cancer therapy. Chemo- and radiation therapies that, especially if combined, induce apoptosis in tumor cells have been used for treating cancer patients for decades. These treatments, however, are limited in their ability to discriminate between malignant and non-malignant cells and, therefore, produce substantial healthy tissue damage and subsequent toxic side-effects. In addition, as a result of these therapies, many tumor types acquire an apoptosis-resistant phenotype and become more aggressive and metastatic. Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) has been considered a promising and reliable selective inducer of apoptosis in cancerous cells. TRAIL, however, is not uniformly effective in cancer and multiple cancer cell types are considered resistant to natural TRAIL. To overcome this deficiency of TRAIL, we have earlier constructed a yeast-human hybrid leucine zipper-TRAIL in which the yeast GCN4-pII leucine zipper was fused to human TRAIL (GCN4-TRAIL). This construct exhibited a significantly improved anti-tumor apoptotic activity and safety, but is potentially immunogenic in humans. Here, we report a novel, potent, and fully human ATF7 leucine zipper-TRAIL (ATF7-TRAIL) fusion construct that is expected to have substantially lower immunogenicity. In solution, ATF7-TRAIL exists solely as a trimer with a Tm of 80°C and is active against cancer cells both in vitro and in vivo, in a mouse tumor xenograft model. Our data suggest that our re-engineered TRAIL is a promising candidate for further evaluation as an antitumor agent.


Assuntos
Apoptose/efeitos dos fármacos , Zíper de Leucina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores Ativadores da Transcrição/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Ligante Indutor de Apoptose Relacionado a TNF/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Am Heart Assoc ; 4(12)2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26675253

RESUMO

BACKGROUND: Ectopic vascular calcification is a common condition associated with aging, atherosclerosis, diabetes, and/or chronic kidney disease. Smooth muscle cells are the best characterized source of osteogenic progenitors in the vasculature; however, recent studies suggest that cells of endothelial origin can also promote calcification. To test this, we sought to increase the osteogenic potential of endothelial cells by overexpressing tissue-nonspecific alkaline phosphatase (TNAP), a key enzyme that regulates biomineralization, and to determine the pathophysiological effect of endothelial TNAP on vascular calcification and cardiovascular function. METHODS AND RESULTS: We demonstrated previously that mice transgenic for ALPL (gene encoding human TNAP) develop severe arterial medial calcification and reduced viability when TNAP is overexpressed in smooth muscle cells. In this study, we expressed the ALPL transgene in endothelial cells following endothelial-specific Tie2-Cre recombination. Mice with endothelial TNAP overexpression survived well into adulthood and displayed generalized arterial calcification. Genes associated with osteochondrogenesis (Runx2, Bglap, Spp1, Opg, and Col2a1) were upregulated in the aortas of endothelial TNAP animals compared with controls. Lesions in coronary arteries of endothelial TNAP mice showed immunoreactivity to Runx2, osteocalcin, osteopontin, and collagen II as well as increased deposition of sialoproteins revealed by lectin staining. By 23 weeks of age, endothelial TNAP mice developed elevated blood pressure and compensatory left ventricular hypertrophy with preserved ejection fraction. CONCLUSIONS: This study presented a novel genetic model demonstrating the osteogenic potential of TNAP-positive endothelial cells in promoting pathophysiological vascular calcification.


Assuntos
Fosfatase Alcalina/metabolismo , Calcinose/metabolismo , Endotélio Vascular/metabolismo , Doença Arterial Periférica/metabolismo , Animais , Calcinose/etiologia , Calcinose/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Doença Arterial Periférica/etiologia , Doença Arterial Periférica/patologia , Reação em Cadeia da Polimerase em Tempo Real
17.
Diabetes ; 64(11): 3873-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26185279

RESUMO

An increasing number of therapies have proven effective at reversing hyperglycemia in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D), yet situations of successful translation to human T1D are limited. This may be partly due to evaluating the effect of treating immediately at diagnosis in mice, which may not be reflective of the advanced disease state in humans at disease onset. In this study, we treated NOD mice with new-onset as well as established disease using various combinations of four drugs: antithymocyte globulin (ATG), granulocyte-colony stimulating factor (G-CSF), a dipeptidyl peptidase IV inhibitor (DPP-4i), and a proton pump inhibitor (PPI). Therapy with all four drugs induced remission in 83% of new-onset mice and, remarkably, in 50% of NOD mice with established disease. Also noteworthy, disease remission occurred irrespective of initial blood glucose values and mechanistically was characterized by enhanced immunoregulation involving alterations in CD4+ T cells, CD8+ T cells, and natural killer cells. This combination therapy also allowed for effective treatment at reduced drug doses (compared with effective monotherapy), thereby minimizing potential adverse effects while retaining efficacy. This combination of approved drugs demonstrates a novel ability to reverse T1D, thereby warranting translational consideration.


Assuntos
Soro Antilinfocitário/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Hiperglicemia/tratamento farmacológico , Inibidores da Bomba de Prótons/uso terapêutico , Animais , Soro Antilinfocitário/farmacologia , Peptídeo C/sangue , Diabetes Mellitus Tipo 1/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Quimioterapia Combinada , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hiperglicemia/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Resultado do Tratamento
18.
PLoS One ; 9(9): e107213, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259810

RESUMO

The kallikrein-kinin system (KKS) comprises a cascade of proteolytic enzymes and biogenic peptides that regulate several physiological processes. Over-expression of tissue kallikrein-1 and modulation of the KKS shows beneficial effects on insulin sensitivity and other parameters relevant to type 2 diabetes mellitus. However, much less is known about the role of kallikreins, in particular tissue kallikrein-1, in type 1 diabetes mellitus (T1D). We report that chronic administration of recombinant human tissue kallikrein-1 protein (DM199) to non-obese diabetic mice delayed the onset of T1D, attenuated the degree of insulitis, and improved pancreatic beta cell mass in a dose- and treatment frequency-dependent manner. Suppression of the autoimmune reaction against pancreatic beta cells was evidenced by a reduction in the relative numbers of infiltrating cytotoxic lymphocytes and an increase in the relative numbers of regulatory T cells in the pancreas and pancreatic lymph nodes. These effects may be due in part to a DM199 treatment-dependent increase in active TGF-beta1. Treatment with DM199 also resulted in elevated C-peptide levels, elevated glucagon like peptide-1 levels and a reduction in dipeptidyl peptidase-4 activity. Overall, the data suggest that DM199 may have a beneficial effect on T1D by attenuating the autoimmune reaction and improving beta cell health.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/imunologia , Imunomodulação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Calicreínas Teciduais/farmacologia , Animais , Autoimunidade/efeitos dos fármacos , Biomarcadores , Glicemia/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Proteínas Recombinantes/administração & dosagem , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Calicreínas Teciduais/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo
19.
PLoS One ; 9(8): e103981, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25100328

RESUMO

Modulation of the kallikrein-kinin system (KKS) has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D). The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1), as a potential novel therapeutic for T2D. Hyperinsulinemic-euglycemic clamp studies suggest that DM199 increases whole body glucose disposal in non-diabetic rats. Single-dose administration of DM199 in obese db/db mice and ZDF rats, showed an acute, dose-dependent improvement in whole-body glucose utilization. Sub-acute dosing for a week in ZDF rats improved glucose utilization, with a concomitant rise in fasting insulin levels and HOMA1-%B scores. After cessation of sub-acute dosing, fasting blood glucose levels were significantly lower in ZDF rats during a drug wash-out period. Our studies show for the first time that DM199 administration results in acute anti-hyperglycemic effects in several preclinical models, and demonstrate the potential for further development of DM199 as a novel therapeutic for T2D.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Calicreínas Teciduais/farmacologia , Animais , Glicemia , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Obesos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Fatores de Tempo
20.
Diabetes ; 63(10): 3470-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24848066

RESUMO

T-cell responses directed against insulin-secreting pancreatic ß-cells are the key events highlighting type 1 diabetes (T1D). Therefore, a defective control of T-cell activation is thought to underlie T1D development. Recent studies implicated a B7-like negative costimulatory protein, V-set domain-containing T-cell activation inhibitor-1 (VTCN1), as a molecule capable of inhibiting T-cell activation and, potentially, an important constituent in experimental models of T1D. Here, we unravel a general deficiency within the VTCN1 pathway that is shared between diabetes-prone mice and a subset of T1D patients. Gradual loss of membrane-tethered VTCN1 from antigen-presenting cells combined with an increased release of soluble VTCN1 (sVTCN1) occurs in parallel to natural T1D development, potentiating hyperproliferation of diabetogenic T cells. Mechanistically, we demonstrate that the loss of membrane-tethered VTCN1 is linked to proteolytic cleavage mediated by the metalloproteinase nardilysin. The cleaved sVTCN1 fragment was detected at high levels in the peripheral blood of 53% T1D patients compared with only 9% of the healthy subjects. Elevated blood sVTCN1 levels appeared early in the disease progression and correlated with the aggressive pace of disease, highlighting the potential use of sVTCN1 as a new T1D biomarker, and identifying nardilysin as a potential therapeutic target.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Metaloendopeptidases/metabolismo , Transdução de Sinais/fisiologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Criança , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa