Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Neurochem Res ; 47(5): 1269-1279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35113305

RESUMO

Oxidative stress and inflammatory processes might contribute to the cascade of events leading Parkinson disease (PD); and vitamins such as riboflavin can exert protection on vulnerable neurons in neurodegenerative conditions. Previously, it was demonstrated that a mixture of lactic acid bacteria (including a riboflavin-producing strain) improved motor skills in a parkinsonian model. The aim of the present work was to investigate the neuroprotective potential of Lactiplantibacillus (L.) plantarum CRL2130, a riboflavin-producing strain in PD models. In vitro, N2a differentiated neurons were exposed the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or commercial riboflavin. In vivo, adult male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid, and received orally L. plantarum CRL2130, L. plantarum CRL725 (parent strain that produces low levels of riboflavin) or commercial vitamin. Results showed that when N2a cells were incubated with intracellular extract from L. plantarum CRL2130 maintained the viability, and significantly decreased the release of IL-6 and the formation of reactive oxygen species (ROS), all affected by MPP+. In vivo, the administration of L. plantarum CRL2130 attenuated motor deficits and prevented dopaminergic neuronal death. Decrease of pro-inflammatory cytokines and increase of IL-10 in both serum and brain were observed in samples from mice that received L. plantarum CRL2130 compared to MPTP control group (without treatment). In addition, these beneficial effects were similar or improved when compared with animals that received commercial riboflavin. In conclusion, L. plantarum CRL2130 showed a neuroprotective effect in both PD models through anti-oxidant/anti-inflammatory mechanisms.


Assuntos
Lactobacillales , Fármacos Neuroprotetores , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Riboflavina/farmacologia , Riboflavina/uso terapêutico
2.
Appl Microbiol Biotechnol ; 105(5): 2097-2107, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33547923

RESUMO

Thiamine or vitamin B1, an essential micronutrient mainly involved in energy production, has a beneficial impact on the nervous system, and its deficiency can be associated with the development and progression of neurodegenerative diseases. The aim of this work was to select thiamine-producing lactic acid bacteria (LAB) and study their physiological effects using neuron cell cultures. In this study, 23 LAB able to produce thiamine were identified by growth in thiamine-free synthetic medium. Intra- and extracellular thiamine concentrations were determined using a microbiological method and results confirmed by HPLC techniques. A wide variation in vitamin production was found showing that this property was not only species specific but also a strain-dependent trait. Five of these strains were pre-selected for their capacity to produce higher concentrations of thiamine. Only the pre-treatment with the intracellular extract of Lactiplantibacillus (L.) plantarum CRL 1905 increased significantly neuronal survival in N2a cells' model of neurotoxicity (MPP+) with thiamine deficiency conditions (amprolium). Furthermore, amprolium-resistant variants of CRL 1905 were isolated by exposition of the strain to increasing concentrations of this toxic thiamine analogue. The variant A9 was able to increase more than 2 times the intracellular thiamine production of the original strain. A9 bacterial extract significantly prevented neuronal cell death and the increase of IL-6. The amprolium-resistant strain A9 showed a modulating and neuroprotective effect in an in vitro model of neurotoxicity constituting a potential bio-strategy to counteract thiamine deficiencies and thus prevent or treat neurodegenerative diseases. KEY POINTS: • LAB can produce thiamine in a species- and strain-dependant manner. • L. plantarum CRL 1905 significantly reduce MPP+-induced neurotoxicity in N2a cells. • Amprolium-resistant strain A9 has neuroprotective effect and prevents IL-6 increase.


Assuntos
Lactobacillales , Doenças Neurodegenerativas , Amprólio , Morte Celular , Humanos , Doenças Neurodegenerativas/prevenção & controle , Tiamina
3.
Appl Microbiol Biotechnol ; 104(8): 3331-3337, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112134

RESUMO

Recent studies have shown that inflammatory diseases are becoming more frequent throughout the world. The causes of these disorders are multifactorial and include genetic, immunological, and environmental factors, and intestinal microbiota dysbiosis. The use of beneficial microorganisms has shown to be useful in the prevention and treatment of disorders such as colitis, mucositis, and even colon cancer by their immune-stimulating properties. It has also been shown that certain vitamins, especially riboflavin and folate derivatives, have proven to be helpful in the treatment of these diseases. The application of vitamin-producing lactic acid bacteria, especially strains that produce folate and riboflavin together with immune-stimulating strains, could be used as adjunct treatments in patients suffering from a wide range of inflammatory diseases since they could improve treatment efficiency and prevent undesirable side effects in addition to their nutrition values. In this review, the most up to date information on the current knowledge and uses of vitamin-producing lactic acid bacteria is discussed in order to stimulate further studies in this field.


Assuntos
Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Lactobacillales/metabolismo , Probióticos/uso terapêutico , Vitaminas/biossíntese , Animais , Anti-Inflamatórios/uso terapêutico , Ensaios Clínicos como Assunto , Colite/tratamento farmacológico , Ácido Fólico/biossíntese , Humanos , Inflamação/complicações , Doenças Inflamatórias Intestinais/classificação , Riboflavina/biossíntese , Vitamina K
4.
Appl Microbiol Biotechnol ; 103(21-22): 8937-8945, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31520133

RESUMO

Inflammatory bowel diseases are chronic and relapsing-remitting disorders that affect the gastrointestinal tract. Previously, the administration of folate and riboflavin-producing lactic acid bacteria (LAB) or an immune-modulating strain showed beneficial effects as they were able to reduce the acute inflammation in mouse models. The aim of this work was to evaluate a mixture of vitamin-producing and immune-modulating LAB administering together with an anti-inflammatory drug during the remission period of a mouse model of recurrent colitis. BALB/c mice were intrarectally instilled with trinitrobenzene sulfonic acid (TNBS) and those who recovered from this acute challenge were given the LAB mixture, mesalazine, or the combination of both (mesalazine + LAB) during 21 days, followed by a second challenge with TNBS. Control mice instilled with ethanol (vehicle of TNBS) and receiving the different treatments were also evaluated in order to study the effect of chronic anti-inflammatory therapy. The combination of mesalazine and LAB mixture was the most effective to decrease the intestinal damage at macroscopic and histological levels and to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in intestinal fluids. In animals instilled with ethanol, mesalazine produced a loss of body weight and intestinal damages with increased IL-6. These side effects were prevented by the co-administration of mesalazine and the LAB mixture. The LAB blend did not affect the primary anti-inflammatory treatment, was able to improve it, and also prevented the side effects of this therapy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Colite/tratamento farmacológico , Lactobacillales/metabolismo , Probióticos/administração & dosagem , Vitaminas/metabolismo , Animais , Colite/genética , Colite/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
5.
Food Microbiol ; 79: 20-26, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30621871

RESUMO

Mandatory fortification of foods with folic acid is being questioned by many scientists principally because of the potential adverse secondary effects associated with their excessive consumption. It has been shown that selected strains of lactic acid bacteria (LAB) are able to produce natural forms of folate and these could be included in foods to prevent deficiencies without causing adverse effects. The aim of this study was to evaluate folate production and fol gene expression by Streptococcus gallolyticus subsp. macedonicus (S. macedonicus) CRL415 under different growth conditions in vitro and to assess its potential probiotic application. Results showed that glucose as the principal carbon source, and incubation at 42 °C under controlled pH conditions (6.0) increased folate production, fol gene expression, and growth of S. macedonicus CRL415. This strain was able to produce elevated folate concentrations during milk fermentation without the need of prolonged incubation times and was able to resist conditions simulating the gastrointestinal tract. In addition, S. macedonicus was susceptible to all required antibiotics, and had a good adhesion level to intestinal cells in vitro, making it a promising candidate for biotechnological application as functional starter cultures in the dairy industry.


Assuntos
Ácido Fólico/biossíntese , Probióticos/metabolismo , Streptococcus/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Bile , Células CACO-2 , Produtos Fermentados do Leite/análise , Produtos Fermentados do Leite/microbiologia , Ácido Fólico/genética , Suco Gástrico , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Streptococcus/genética , Streptococcus/crescimento & desenvolvimento , Temperatura
6.
J Basic Microbiol ; 57(3): 245-252, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27966212

RESUMO

Riboflavin (vitamin B2 ) is one of the B-group water-soluble vitamins and is essential for energy metabolism of the cell. The aim of this study was to determine factors that affect riboflavin production by Lactobacillus (L.) plantarum CRL 725 grown in a semi defined medium and evaluate the expression of its rib genes. The factors found to enhance riboflavin production in this medium were incubation at 30 °C, and the addition of specific medium constituents, such as casamino acids (10 g L-1 ), guanosine (0.04 g L-1 ), and sucrose as carbon source (20 g L-1 ). In these conditions, higher riboflavin concentrations were directly associated with significant increases in the expression of ribA, ribB, and ribC genes. The culture conditions defined in this work and its application to a roseoflavin resistant mutant of L. plantarum allowed for a sixfold increase in riboflavin concentrations in our semi-defined medium which were also significantly higher than those obtained previously using the same strain to ferment soymilk. These conditions should thus be evaluated to increase vitamin production in fermented foods.


Assuntos
Genes Bacterianos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Riboflavina/biossíntese , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/química , Fermentação , Guanosina/metabolismo , Lactobacillus plantarum/efeitos dos fármacos , Mutação , Nucleotidiltransferases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Leite de Soja/metabolismo , Sacarose/metabolismo
7.
Appl Microbiol Biotechnol ; 99(10): 4277-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25487890

RESUMO

The cell envelope-associated proteinase (CEP) of Lactobacillus delbrueckii subsp. lactis CRL 581 (PrtL) has an essential role in bacterial growth, contributes to the flavor and texture development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. The genome of L. delbrueckii subsp. lactis CRL 581 possesses only one gene that encodes PrtL, which consists of 1924 amino acids and is a multidomain protein anchored to the cell via its W domain. PrtL was extracted from the cell under high ionic strength conditions using NaCl, suggesting an electrostatic interaction between the proteinase and the cell envelope. The released PrtL was purified and biochemically characterized; its activity was maximal at temperatures between 37 and 40 °C and at pH between 7 and 8. Under optimal conditions, PrtL exhibited higher affinity for succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide than for succinyl-alanyl-glutamyl-prolyl-phenylalanine-p-nitroanilide, while methoxy-succinyl-arginyl-prolyl-tyrosyl-p-nitroanilide was not degraded. A similar α- and ß-casein degradation pattern was observed with the purified and the cell envelope-bound proteinase. Finally, on the basis of its specificity towards caseins and the unique combination of amino acids at residues thought to be involved in substrate specificity, PrtL can be classified as a representative of a new group of CEP.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lactobacillus delbrueckii/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Estabilidade Enzimática , Cinética , Lactobacillus delbrueckii/química , Lactobacillus delbrueckii/genética , Peptídeo Hidrolases/genética , Especificidade por Substrato
8.
Appl Microbiol Biotechnol ; 99(10): 4343-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25661998

RESUMO

Lactobacillus fermentum CECT 5716, isolated from human milk, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays, which suggests a strong potential as a probiotic strain. In this work, some phenotypic properties of L. fermentum CECT 5716 were evaluated, and the genetic basis for the obtained results was searched for in the strain genome. L. fermentum CECT 5716 does not contain plasmids and showed neither bacteriocin nor biogenic amine biosynthesis ability but was able to produce organic acids, glutathione, riboflavin, and folates and to moderately stimulate the maturation of mouse dendritic cells. No prophages could be induced, and the strain was sensitive to all antibiotics proposed by European Food Safety Authority (EFSA) standards, while no transmissible genes potentially involved in antibiotic resistance were detected in its genome. Globally, there was an agreement between the phenotype properties of L. fermentum CECT 5716 and the genetic information contained in its genome.


Assuntos
Genoma Bacteriano , Limosilactobacillus fermentum/isolamento & purificação , Leite Humano/microbiologia , Probióticos/química , Animais , Antibacterianos/farmacologia , Feminino , Ácido Fólico/metabolismo , Glutationa/metabolismo , Humanos , Limosilactobacillus fermentum/efeitos dos fármacos , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Plasmídeos/metabolismo , Probióticos/classificação , Probióticos/isolamento & purificação , Riboflavina/metabolismo
9.
Appl Microbiol Biotechnol ; 97(17): 7831-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832109

RESUMO

Ability of industrially relevant species of thermophilic lactobacilli strains to hydrolyze proteins from animal (caseins and ß-lactoglobulin) and vegetable (soybean and wheat) sources, as well as influence of peptide content of growth medium on cell envelope-associated proteinase (CEP) activity, was evaluated. Lactobacillus delbrueckii subsp. lactis (CRL 581 and 654), L. delbrueckii subsp. bulgaricus (CRL 454 and 656), Lactobacillus acidophilus (CRL 636 and 1063), and Lactobacillus helveticus (CRL 1062 and 1177) were grown in a chemically defined medium supplemented or not with 1 % Casitone. All strains hydrolyzed mainly ß-casein, while degradation of αs-caseins was strain dependent. Contrariwise, κ-Casein was poorly degraded by the studied lactobacilli. ß-Lactoglobulin was mainly hydrolyzed by CRL 656, CRL 636, and CRL 1062 strains. The L. delbrueckii subsp. lactis strains, L. delbrueckii subsp. bulgaricus CRL 656, and L. helveticus CRL 1177 degraded gliadins in high extent, while the L. acidophilus and L. helveticus strains highly hydrolyzed soy proteins. Proteinase production was inhibited by Casitone, the most affected being the L. delbrueckii subsp. lactis species. This study highlights the importance of proteolytic diversity of lactobacilli for rational strain selection when formulating hydrolyzed dairy or vegetable food products.


Assuntos
Proteínas de Bactérias/química , Caseínas/química , Lactobacillus/enzimologia , Lactoglobulinas/química , Peptídeo Hidrolases/química , Proteínas de Plantas/química , Verduras/química , Animais , Biocatálise , Bovinos , Laticínios/análise , Hidrólise , Lactobacillus/química , Lactobacillus/classificação , Glycine max/química , Triticum/química
10.
Can J Microbiol ; 58(5): 581-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22502809

RESUMO

Folate is a B-group vitamin that cannot be synthesized by humans and must be obtained exogenously. Although some species of lactic acid bacteria (LAB) can produce folates, little is known about the production of this vitamin by yogurt starter cultures. Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were isolated from artisanal Argentinean yogurts and were grown in folate-free culture medium (FACM) and nonfat milk after which intracellular and extracellular folate production were evaluated. From the initial 92 isolated LAB strains, 4 L. delbrueckii subsp. bulgaricus and 32 S. thermophilus were able to grow in the absence of folate. Lactobacillus delbrueckii subsp. bulgaricus CRL 863 and S. thermophilus CRL 415 and CRL 803 produced the highest extracellular folate levels (from 22.3 to 135 µg/L) in FACM. In nonfat milk, these strains were able to increase the initial folate concentrations by almost 190%. This is the first report where native strains of L. delbrueckii subsp. bulgaricus were shown to produce natural folate. The LAB strains identified in this study could be used in developing novel fermented products bio-enriched in natural folates that could in turn be used as an alternative to fortification with the controversial synthetic chemical folic acid.


Assuntos
Fermentação , Ácido Fólico/biossíntese , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Iogurte/microbiologia , Animais , Argentina , Meios de Cultura/química , Microbiologia de Alimentos , Lactobacillus delbrueckii/isolamento & purificação , Leite/microbiologia , Streptococcus thermophilus/isolamento & purificação
11.
Food Funct ; 13(15): 8056-8067, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35791824

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by deterioration and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in motor deficits. Many studies have revealed an inverse relationship between thiamine consumption and susceptibility to PD. Previously, Lactiplantibacillus (L.) plantarum CRL 1905 was selected as thiamine-producing lactic acid bacteria (LAB), and its amprolium-resistant clone, L. plantarum CRL 1905*, was able to produce higher levels of this vitamin and inhibited neuronal death in an in vitro model. The present work aimed to evaluate the neuroprotective effect of these thiamine-producing LAB in an in vivo parkinsonian mouse model. Male C57BL/6 mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were orally administered with one of the LAB strains or commercial thiamine for 1 month. The administration of either thiamine-producing LAB prevented the motor deficits of mice similar to the effects of the commercial vitamin. These benefits were associated with increased number of tyrosine hydroxylase positive (TH+) neurons in the SNpc. The evaluation of the inflammatory response caused by the neurotoxin showed that both LAB decreased pro-inflammatory cytokines in serum; moreover, the strain selected as the higher thiamine producer showed the best anti-inflammatory effect locally in the brain and significantly decreased the levels of IL-6, TNF-α, IFN-γ and MCP-1, which remained similar to the levels of healthy control animals. These results demonstrated that thiamine-producing L. plantatum CRL 1905* has the potential to be used as part of a strategy to prevent or to complement the treatments of neurodegenerative diseases such as PD. A limitation of this study is that we cannot guarantee whether LAB are capable of producing thiamine in the intestinal tract or release the vitamin after lysis; however, the results show that thiamine production by L. plantarum CRL 1905 is implicated in the observed effect, in addition to other benefits associated with the LAB strain that are also involved and are currently under study.


Assuntos
Lactobacillales , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Substância Negra , Tiamina , Vitaminas/farmacologia
12.
Front Microbiol ; 11: 610016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391235

RESUMO

Gamma-aminobutyric acid (GABA) plays a key role in mammals as the major inhibitory neurotransmitter of the central nervous system. Although GABA may not be able to cross the human blood-brain barrier, it was approved as a food ingredient because of its benefits to the host after oral administration including anti-hypertensive, anti-depressant and anti-inflammatory activities. Considering the current trend toward the development of new functional and natural products and that microbial fermentation is one of the most promising methods to produce this non-protein amino acid, the in situ production of GABA through fermentation of strawberry and blueberry juices by the efficient GABA producer strain, Levilactobacillus brevis (formerly known as Lactobacillus brevis) CRL 2013, was evaluated. A high GABA production (262 mM GABA) was obtained after fermenting strawberry juice supplemented with yeast extract for 168 h, being GABA yield significantly higher in strawberry juices than in the blueberry ones. Thus, GABA-enriched fermented strawberry juice (FSJ) was selected to carry out in vivo and in vitro studies. The in vitro functional analysis of the GABA-enriched FSJ demonstrated its ability to significantly decrease the expression of cox-2 gene in LPS stimulated RAW 264.7 macrophages. In addition, in vivo studies in mice demonstrated that both, L. brevis CRL 2013 and the GABA-enriched FSJ were capable of reducing the levels of peritoneal, intestinal and serum TNF-α, IL-6, and CXCL1, and increasing IL-10 and IFN-γ in mice exposed to an intraperitoneal challenge of LPS. Of note, the GABA-enriched FSJ was more efficient than the CRL 2013 strain to reduce the pro-inflammatory factors and enhance IL-10 production. These results indicated that the CRL 2013 strain exerts anti-inflammatory effects in the context of LPS stimulation and that this effect is potentiated by fermentation. Our results support the potential use of L. brevis CRL 2013 as an immunomodulatory starter culture and strawberry juice as a remarkable vegetable matrix for the manufacture of GABA-enriched fermented functional foods capable of differentially modulating the inflammatory response triggered by TLR4 activation.

13.
Nutrition ; 79-80: 110995, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32977125

RESUMO

OBJECTIVES: Parkinson's disease (PD) is a neurodegenerative process that affects the motor function and involves an inflammatory response and B vitamin deficiencies. The aim of this study was to evaluate the effect of B-group vitamin-producing and immunomodulatory lactic acid bacteria (LAB) in a murine model of PD. METHODS: The effect of Lactobacillus plantarum CRL 2130 (a riboflavin producer), Streptococcus thermophilus CRL 807 (an immunomodulatory strain), and Streptococcus thermophilus CRL 808 (a folate producer) were evaluated individually and as a mixture in mice injected with 1-methyl-4-fenil-1,2,3,6-tetrahidropiridina. Motor capacity, tyrosine hydrolase in the brain, and cytokine concentrations in serum and brain tissues were evaluated in 1-methyl-4-fenil-1,2,3,6-tetrahidropiridina-treated mice after bacterial supplementation. RESULTS: The mice receiving the selected LAB showed significantly improved motor skills compared with those that did not receive bacterial supplementation. When given the mixture of all 3 strains together, the animals had higher brain tyrosine hydrolase-positive cell counts, decreased inflammatory cytokines interleukin 6 and tumor necrosis factor alpha in serum, and increased antiinflammatory cytokine interleukin 10 in serum and brain tissues compared with animals that did not receive LAB supplementation. CONCLUSIONS: The results showed the potential of a selected LAB mixture to improve motor behavior and neuroinflammation in PD. This probiotic mixture could be used as an adjunct treatment in the control of PD.


Assuntos
Lactobacillales , Fármacos Neuroprotetores , Doença de Parkinson , Probióticos , Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Streptococcus thermophilus
14.
Int J Food Microbiol ; 333: 108792, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32707524

RESUMO

Gamma aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in nature and its physiological importance goes beyond its role as an inhibitory neurotransmitter of the central nervous system in mammals. Since microbial fermentation is one of the most promising methods to obtain GABA, the production of this metabolite by several strains of lactic acid bacteria isolated from quinoa and amaranth sourdoughs was investigated. Lactobacillus brevis CRL 2013 produced the highest GABA levels, reaching 265 mM when optimal culture conditions were set up. The fermentative profile showed that CRL 2013 was able to catabolize carbohydrates through the phosphoketolase pathway yielding variable amounts of lactic acid, acetate and ethanol, which depended on the type of carbon source available and the presence of external electron acceptors such as fructose. Enhanced growth parameters and low GABA synthesis were associated to pentose fermentation. This impairment on GABA production machinery was partially overpassed by the addition of ethanol to the culture media. These results support the potential use of L. brevis CRL 2013 as a starter culture for the manufacture of GABA-enriched functional foods and provide further insights to the understanding of the GAD system regulation in lactic acid bacteria.


Assuntos
Pão/microbiologia , Metabolismo dos Carboidratos/fisiologia , Fermentação/fisiologia , Levilactobacillus brevis/metabolismo , Ácido gama-Aminobutírico/biossíntese , Acetatos/metabolismo , Amaranthus/microbiologia , Carboidratos , Chenopodium quinoa/microbiologia , Meios de Cultura/metabolismo , Etanol/metabolismo , Ácido Láctico/metabolismo
15.
Nutrition ; 54: 165-172, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29982144

RESUMO

OBJECTIVES: Intestinal mucositis (IM) is a local inflammatory response that causes alterations of the intestinal structure that in turn affect nutrient absorption and a side effect that is commonly associated with cancer treatments. Lactobacillus plantarum CRL2130 is a riboflavin-overproducing strain that has previously been shown to provide antiinflammatory properties. The objective of this study was to evaluate the effects of this riboflavin-producing strain in a chemically induced murine mucositis model. METHODS: Mucositis was induced by daily injections of 5-fluororacil (5-FU) after which mice were either given L. plantarum CRL2130, CRL725 (strain from which CRL2130 was derived that does not overproduce riboflavin), or commercial riboflavin twice daily during 6 d of chemotherapy agent injections. The effect of the strains and riboflavin was also evaluated in vitro using Caco-2 intestinal cancer cell cultures to determine if they interfere with 5-FU's anticancer activity. RESULTS: The administration of L. plantarum CRL2130 significantly attenuated the pathologic changes induced by 5-FU in mice such as body weight loss, diarrhea, shortening of villus height, increases in proinflammatory cytokine concentrations, and elevated production of interleukin 10. In vitro assays using Caco-2 cells showed that the effectiveness of 5-FU was not affected by L. plantarum CRL2130 and that this strain exerted an inhibitory mechanism against oxidative stress. CONCLUSIONS: These results indicate that the riboflavin-overproducing strain L. plantarum CRL2130 could be useful to prevent mucositis during cancer treatments and would not affect the primary treatment.


Assuntos
Lactobacillus plantarum/fisiologia , Mucosite/prevenção & controle , Probióticos/farmacologia , Substâncias Protetoras/farmacologia , Riboflavina/biossíntese , Animais , Antineoplásicos/efeitos adversos , Células CACO-2/microbiologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Fluoruracila/efeitos adversos , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosite/induzido quimicamente , Riboflavina/administração & dosagem
16.
Genome Announc ; 3(3)2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26112792

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus CRL871 is the first strain of L. delbrueckii subsp. bulgaricus reported as a folate-producing strain. We report the draft genome sequence of L. delbrueckii subsp. bulgaricus CRL871 (2,063,981 bp, G+C content of 49.1%). This strain is of great biotechnological importance to the dairy industry because it constitutes an alternative to folic acid fortification.

17.
Int J Food Microbiol ; 191: 10-6, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25217720

RESUMO

The ability of 55 strains from different Lactobacillus species to produce folate was investigated. In order to evaluate folic acid productivity, lactobacilli were cultivated in the folate-free culture medium (FACM). Most of the tested strains needed folate for growth. The production and the extent of vitamin accumulation were distinctive features of individual strains. Lactobacillus amylovorus CRL887 was selected for further studies because of its ability to produce significantly higher concentrations of vitamin (81.2 ± 5.4 µg/L). The safety of this newly identified folate producing strain was evaluated through healthy experimental mice. No bacterial translocation was detected in liver and spleen after consumption of CRL887 during 7 days and no undesirable side effects were observed in the animals that received this strain. This strain in co-culture with previously selected folate producing starter cultures (Lactobacillus bulgaricus CRL871, and Streptococcus thermophilus CRL803 and CRL415) yielded a yogurt containing high folate concentrations (263.1 ± 2.4 µg/L); a single portion of which would provide 15% of the recommended dietary allowance. This is the first report where a Lactobacillus amylovorus strain was successfully used as co-culture for natural folate bio-enrichment of fermented milk.


Assuntos
Ácido Fólico/biossíntese , Microbiologia de Alimentos , Lactobacillus/metabolismo , Iogurte/microbiologia , Animais , Técnicas de Cocultura , Fermentação , Ácido Fólico/análise , Lactobacillus/crescimento & desenvolvimento , Camundongos , Leite/microbiologia , Streptococcus thermophilus/metabolismo , Iogurte/análise
18.
Genome Announc ; 1(4)2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23950129

RESUMO

We report the draft genome sequence of the probiotic Lactobacillus rhamnosus strain CRL1505. This new probiotic strain has been included into official Nutritional Programs in Argentina. The draft genome sequence is composed of 3,417,633 bp with 3,327 coding sequences.

19.
Genome Announc ; 1(4)2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23929489

RESUMO

We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

20.
J Agric Food Chem ; 57(18): 8607-11, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19754175

RESUMO

The cell-envelope-associated proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581 (PrtL) has an essential role in bacterial growth and contributes to the development of the organoleptic properties of hard cheeses and to the release of bioactive health-beneficial peptides from milk proteins. In this study, the effect of environmental pH on PrtL production by L. delbrueckii subsp. lactis CRL 581 in a chemically defined medium and the influence of pH, temperature, and Ca(2+) ions on PrtL activity, stability, and release from the cell envelope were analyzed. The maximum PrtL activity levels were observed in the middle of the exponential growth phase, with the values at constant pH of 5.5 and 6.0 being higher than those observed at pH 4.5 and 5.0. At pH 4.5, PrtL remained mainly associated with the cell envelope, whereas at pH values of 5.5 or higher, approximately 40% of PrtL was found in the medium. In addition, the PrtL activity was stable for 24 h at 4 and 25 degrees C, and its release at 4, 25, and 40 degrees C was time-dependent. PrtL activity, stability, and release were independent of the presence of Ca(2+) ions in the medium. These results indicated that, at pH and temperature conditions found during the manufacture of hard cheeses, PrtL would remain active either bound to the cell or released in the supernatant contributing to the organoleptic characteristics and beneficial health effects of the fermented milk products.


Assuntos
Lactobacillus delbrueckii/enzimologia , Peptídeo Hidrolases/metabolismo , Cálcio/farmacologia , Cátions Bivalentes/farmacologia , Queijo/microbiologia , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/biossíntese , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa