Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(7): e16672, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040020

RESUMO

The Pseudoalteromonas genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several Pseudoalteromonas species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA-DNA hybridization, average amino acid identity, and the difference in G + C% between Pseudoalteromonas type strains with publicly available genomes. The genome of the Pseudoalteromonas elyakovii type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six Pseudoalteromonas species, namely P. mariniglutinosa, P. donghaensis, P. maricaloris, P. elyakovii, P. profundi, and P. issachenkonii, should be reclassified as later heterotypic synonyms of the following validly published species: P. haloplanktis, P. lipolytica, P. flavipulchra, P. distincta, P. gelatinilytica, and P. tetraodonis. Furthermore, two names without valid standing, 'P. telluritireducens' and 'P. spiralis', should be associated with the validly published Pseudoalteromonas species P. agarivorans and P. tetraodonis, respectively.


Assuntos
Genoma Bacteriano , Filogenia , Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/classificação , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA/métodos , Hibridização de Ácido Nucleico
2.
BMC Microbiol ; 24(1): 11, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172649

RESUMO

BACKGROUND: Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS: We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION: Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.


Assuntos
Microbiota , Strongylocentrotus purpuratus , Animais , Strongylocentrotus purpuratus/genética , RNA Ribossômico 16S/genética , Ouriços-do-Mar/genética , Bactérias/genética
3.
Antonie Van Leeuwenhoek ; 117(1): 45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424217

RESUMO

Strain AA17T was isolated from an apparently healthy fragment of Montipora capitata coral from the reef surrounding Moku o Lo'e in Kane'ohe Bay, O'ahu, Hawai'i, USA, and was taxonomically evaluated using a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain AA17T shared the greatest similarity with Aestuariibacter halophilus JC2043T (96.6%), and phylogenies based on 16S rRNA gene sequences grouped strain AA17T with members of the Aliiglaciecola, Aestuariibacter, Lacimicrobium, Marisediminitalea, Planctobacterium, and Saliniradius genera. To more precisely infer the taxonomy of strain AA17T, a phylogenomic analysis was conducted and indicated that strain AA17T formed a monophyletic clade with A. halophilus JC2043T, divergent from Aestuariibacter salexigens JC2042T and other related genera. As a result of monophyly and multiple genomic metrics of genus demarcation, strain AA17T and A. halophilus JC2043T comprise a distinct genus for which the name Fluctibacter gen. nov. is proposed. Based on a polyphasic characterisation and identifying differences in genomic and taxonomic data, strain AA17T represents a novel species, for which the name Fluctibacter corallii sp. nov. is proposed. The type strain is AA17T (= LMG 32603 T = NCTC 14664T). This work also supports the reclassification of A. halophilus as Fluctibacter halophilus comb. nov., which is the type species of the Fluctibacter genus. Genomic analyses also support the reclassification of Paraglaciecola oceanifecundans as a later heterotypic synonym of Paraglaciecola agarilytica.


Assuntos
Alteromonadaceae , Antozoários , Ácidos Graxos , Animais , Ácidos Graxos/análise , Havaí , Baías , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa