Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39442556

RESUMO

Hematopoietic Stem Cell (HSC) gene therapy (GT) may provide lifelong reconstitution of the hematopoietic system with gene-corrected cells1. However, the effects of underlying genetic diseases, replication stress, and aging on hematopoietic reconstitution and lineage specification remain unclear. In this study, we analyzed hematopoietic reconstitution in 53 patients treated with lentiviral-HSC-GT for diverse conditions such as metachromatic leukodystrophy2,3 (MLD), Wiskott-Aldrich syndrome4,5 (WAS), and ß-thalassemia6 (ß-Thal) over a follow-up period of up to 8 years, using vector integration sites as markers of clonal identity. We found that long-term hematopoietic reconstitution was supported by 770 to 35,000 active HSCs. While 50% of transplanted clones demonstrated multilineage potential across all conditions, the remaining clones exhibited a disease-specific preferential lineage output and long-term commitment: myeloid for MLD, lymphoid for WAS, and erythroid for ß-Thal, particularly in adult patients. Our results indicate that HSC clonogenic activity, lineage output, long-term lineage commitment, and rates of somatic mutations are influenced by the underlying disease, patient age at the time of therapy, the extent of genetic defect correction, and the hematopoietic stress imposed by the inherited disease. This suggests that HSCs adapt to the pathological condition during hematopoietic reconstitution.

2.
Blood ; 141(10): 1169-1179, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36508706

RESUMO

ß-Thalassemia (BT) is one of the most common genetic diseases worldwide and is caused by mutations affecting ß-globin production. The only curative treatment is allogenic hematopoietic stem/progenitor cells (HSPCs) transplantation, an approach limited by compatible donor availability and immunological complications. Therefore, transplantation of autologous, genetically-modified HSPCs is an attractive therapeutic option. However, current gene therapy strategies based on the use of lentiviral vectors are not equally effective in all patients and CRISPR/Cas9 nuclease-based strategies raise safety concerns. Thus, base editing strategies aiming to correct the genetic defect in patients' HSPCs could provide safe and effective treatment. Here, we developed a strategy to correct one of the most prevalent BT mutations (IVS1-110 [G>A]) using the SpRY-ABE8e base editor. RNA delivery of the base editing system was safe and led to ∼80% of gene correction in the HSPCs of patients with BT without causing dangerous double-strand DNA breaks. In HSPC-derived erythroid populations, this strategy was able to restore ß-globin production and correct inefficient erythropoiesis typically observed in BT both in vitro and in vivo. In conclusion, this proof-of-concept study paves the way for the development of a safe and effective autologous gene therapy approach for BT.


Assuntos
Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Edição de Genes , Sistemas CRISPR-Cas , Mutação , Globinas beta/genética
3.
Mol Ther ; 29(2): 489-504, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221437

RESUMO

Gene transfer into autologous hematopoietic stem progenitor cells (HSPCs) has the potential to cure monogenic inherited disorders caused by an altered development and/or function of the blood system, such as immune deficiencies and red blood cell and platelet disorders. Gene-corrected HSPCs and their progeny can also be exploited as cell vehicles to deliver molecules into the circulation and tissues, including the central nervous system. In this review, we focus on the progress of clinical development of medicinal products based on HSPCs engineered and modified by integrating viral vectors for the treatment of monogenic blood disorders and metabolic diseases. Two products have reached the stage of market approval in the EU, and more are foreseen to be approved in the near future. Despite these achievements, several challenges remain for HSPC gene therapy (HSPC-GT) precluding a wider application of this type of gene therapy to a wider set of diseases while gene-editing approaches are entering the clinical arena.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Transdução Genética
4.
J Allergy Clin Immunol ; 136(3): 692-702.e2, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25792466

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene-corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. OBJECTIVE: Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. METHODS: We evaluated B-cell counts, B-cell subset distribution, B cell-activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. RESULTS: After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19(+)CD21(-)CD35(-) and CD21(low) B cells and a reduction in B cell-activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. CONCLUSIONS: We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic improvement in patients with WAS.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Autoanticorpos/biossíntese , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Criança , Pré-Escolar , Expressão Gênica , Perfilação da Expressão Gênica , Vetores Genéticos , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoglobulinas/biossíntese , Imunofenotipagem , Lactente , Lentivirus/genética , Masculino , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução Genética , Condicionamento Pré-Transplante , Transplante Autólogo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Síndrome de Wiskott-Aldrich/patologia , Proteína da Síndrome de Wiskott-Aldrich/imunologia
5.
Mol Ther ; 22(8): 1472-1483, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24869932

RESUMO

Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development.


Assuntos
Terapia Genética/métodos , Doença Granulomatosa Crônica/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/virologia , Glicoproteínas de Membrana/metabolismo , MicroRNAs/genética , NADPH Oxidases/metabolismo , Animais , Antígenos CD34/metabolismo , Linhagem Celular , Células Cultivadas , Terapia Combinada , Modelos Animais de Doenças , Vetores Genéticos/uso terapêutico , Doença Granulomatosa Crônica/patologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos , Células Mieloides/metabolismo , NADPH Oxidase 2
6.
J Allergy Clin Immunol ; 134(2): 420-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24679343

RESUMO

BACKGROUND: Five different G protein-coupled sphingosine-1-phosphate (S1P) receptors (S1P1-S1P5) regulate a variety of physiologic and pathophysiologic processes, including lymphocyte circulation, multiple sclerosis (MS), and cancer. Although B-lymphocyte circulation plays an important role in these processes and is essential for normal immune responses, little is known about S1P receptors in human B cells. OBJECTIVE: To explore their function and signaling, we studied B-cell lines and primary B cells from control subjects, patients with leukemia, patients with S1P receptor inhibitor-treated MS, and patients with primary immunodeficiencies. METHODS: S1P receptor expression was analyzed by using multicolor immunofluorescence microscopy and quantitative PCR. Transwell assays were used to study cell migration. S1P receptor internalization was visualized by means of time-lapse imaging with fluorescent S1P receptor fusion proteins expressed by using lentiviral gene transfer. B-lymphocyte subsets were characterized by means of flow cytometry and immunofluorescence microscopy. RESULTS: Showing that different B-cell populations express different combinations of S1P receptors, we found that S1P1 promotes migration, whereas S1P4 modulates and S1P2 inhibits S1P1 signals. Expression of CD69 in activated B lymphocytes and B cells from patients with chronic lymphocytic leukemia inhibited S1P-induced migration. Studying B-cell lines, normal B lymphocytes, and B cells from patients with primary immunodeficiencies, we identified Bruton tyrosine kinase, ß-arrestin 2, LPS-responsive beige-like anchor protein, dedicator of cytokinesis 8, and Wiskott-Aldrich syndrome protein as critical signaling components downstream of S1P1. CONCLUSION: Thus S1P receptor signaling regulates human B-cell circulation and might be a factor contributing to the pathology of MS, chronic lymphocytic leukemia, and primary immunodeficiencies.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Imunodeficiência de Variável Comum/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Esclerose Múltipla/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tirosina Quinase da Agamaglobulinemia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Arrestinas/genética , Arrestinas/imunologia , Arrestinas/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Linhagem Celular , Movimento Celular , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/imunologia , Imunodeficiência de Variável Comum/patologia , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/imunologia , Transdução de Sinais , Imagem com Lapso de Tempo , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/imunologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , beta-Arrestina 2 , beta-Arrestinas
7.
J Allergy Clin Immunol ; 133(3): 799-806.e10, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24506932

RESUMO

BACKGROUND: Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. OBJECTIVE: We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. METHODS: Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. RESULTS: Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. CONCLUSIONS: ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT.


Assuntos
Adenosina Desaminase/deficiência , Linfócitos B/fisiologia , Terapia de Reposição de Enzimas , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Adenosina Desaminase/genética , Adenosina Desaminase/uso terapêutico , Adolescente , Fator Ativador de Células B/fisiologia , Linfócitos B/imunologia , Criança , Pré-Escolar , Humanos , Lactente
8.
J Autoimmun ; 50: 42-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24369837

RESUMO

Wiskott-Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mutations in its gene cause the Wiskott-Aldrich Syndrome (WAS), a primary immunodeficiency with microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifestations, frequently observed in WAS patients, are associated with an increased risk of mortality and still represent an unsolved aspect of the disease. B cells play a crucial role both in immune competence and self-tolerance and defects in their development and function result in immunodeficiency and/or autoimmunity. We performed a phenotypical and molecular analysis of central and peripheral B-cell compartments in WAS pediatric patients. We found a decreased proportion of immature B cells in the bone marrow correlating with an increased presence of transitional B cells in the periphery. These results could be explained by the defective migratory response of WAS B cells to SDF-1α, essential for the retention of immature B cells in the BM. In the periphery, we observed an unusual expansion of CD21(low) B-cell population and increased plasma BAFF levels that may contribute to the high susceptibility to develop autoimmune manifestations in WAS patients. WAS memory B cells were characterized by a reduced in vivo proliferation, decreased somatic hypermutation and preferential usage of IGHV4-34, an immunoglobulin gene commonly found in autoreactive B cells. In conclusion, our findings demonstrate that WASp-deficiency perturbs B-cell homeostasis thus adding a new layer of immune dysregulation concurring to the increased susceptibility to develop autoimmunity in WAS patients.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Suscetibilidade a Doenças/imunologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Síndrome de Wiskott-Aldrich/imunologia , Fator Ativador de Células B/sangue , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Linfócitos B/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Diferenciação Celular , Movimento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Expressão Gênica , Homeostase/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Memória Imunológica , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologia , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/imunologia
9.
Blood ; 119(6): 1428-39, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22184407

RESUMO

Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.


Assuntos
5'-Nucleotidase/imunologia , Adenosina/imunologia , Agamaglobulinemia/imunologia , Antígenos CD/imunologia , Apirase/imunologia , Imunodeficiência Combinada Severa/imunologia , Linfócitos T Reguladores/imunologia , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Adenosina Desaminase/metabolismo , Adenosina Desaminase/uso terapêutico , Adolescente , Adulto , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Autoanticorpos/imunologia , Criança , Pré-Escolar , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Hipotireoidismo/enzimologia , Hipotireoidismo/genética , Hipotireoidismo/imunologia , Imuno-Histoquímica , Lactente , Masculino , Camundongos , Camundongos Knockout , Polietilenoglicóis/química , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Linfócitos T Reguladores/metabolismo
10.
J Inherit Metab Dis ; 37(4): 525-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24619149

RESUMO

In the last years important progress has been made in the treatment of several primary immunodeficiency disorders (PIDs) with gene therapy. Hematopoietic stem cell (HSC) gene therapy indeed represents a valid alternative to conventional transplantation when a compatible donor is not available and recent success confirmed the great potential of this approach. First clinical trials performed with gamma retroviral vectors were promising and guaranteed clinical benefits to the patients. On the other hand, the outcome of severe adverse events as the development of hematological abnormalities highlighted the necessity to develop a safer platform to deliver the therapeutic gene. Self-inactivating (SIN) lentiviral vectors (LVVs) were studied to overcome this hurdle through their preferable integration pattern into the host genome. In this review, we describe the recent advancements achieved both in vitro and at preclinical level with LVVs for the treatment of Wiskott-Aldrich syndrome (WAS), chronic granulomatous disease (CGD), ADA deficiency (ADA-SCID), Artemis deficiency, RAG1/2 deficiency, X-linked severe combined immunodeficiency (γchain deficiency, SCIDX1), X-linked lymphoproliferative disease (XLP) and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Síndromes de Imunodeficiência/terapia , Lentivirus/genética , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Animais , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , Humanos , Síndromes de Imunodeficiência/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia
11.
Mol Ther ; 21(1): 175-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22371846

RESUMO

Gene therapy with ex vivo-transduced hematopoietic stem/progenitor cells may represent a valid therapeutic option for monogenic immunohematological disorders such as Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency associated with thrombocytopenia. We evaluated the preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vectors (LV) encoding WAS protein (WASp). We first set up and validated a transduction protocol for CD34(+) cells derived from bone marrow (BM) or mobilized peripheral blood (MPB) using a clinical grade, highly purified LV. Robust transduction of progenitor cells was obtained in normal donors and WAS patients' cells, without evidence of toxicity. To study biodistribution of human cells and exclude vector release in vivo, LV-transduced CD34(+) cells were transplanted in immunodeficient mice, showing a normal engraftment and differentiation ability towards transduced lymphoid and myeloid cells in hematopoietic tissues. Vector mobilization to host cells and transmission to germline cells of the LV were excluded by different molecular assays. Analysis of vector integrations showed polyclonal integration patterns in vitro and in human engrafted cells in vivo. In summary, this work establishes the preclinical safety and efficacy of human CD34(+) cells gene therapy for the treatment of WAS.


Assuntos
Antígenos CD34/imunologia , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Vetores Genéticos , Lentivirus/genética , Transdução Genética , Síndrome de Wiskott-Aldrich/terapia , Animais , Células da Medula Óssea/imunologia , Camundongos , Camundongos Knockout
12.
J Exp Med ; 204(2): 369-80, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17296785

RESUMO

A large proportion of Wiskott-Aldrich syndrome (WAS) patients develop autoimmunity and allergy. CD4(+)CD25(+)FOXP3(+) natural regulatory T (nTreg) cells play a key role in peripheral tolerance to prevent immune responses to self-antigens and allergens. Therefore, we investigated the effect of WAS protein (WASP) deficiency on the distribution and suppressor function of nTreg cells. In WAS(-/-) mice, the steady-state distribution and phenotype of nTreg cells in the thymus and spleen were normal. However, WAS(-/-) nTreg cells engrafted poorly in immunized mice, indicating perturbed homeostasis. Moreover, WAS(-/-) nTreg cells failed to proliferate and to produce transforming growth factor beta upon T cell receptor (TCR)/CD28 triggering. WASP-dependent F-actin polarization to the site of TCR triggering might not be involved in WAS(-/-) nTreg cell defects because this process was also inefficient in wild-type (WT) nTreg cells. Compared with WT nTreg cells, WAS(-/-) nTreg cells showed reduced in vitro suppressor activity on both WT and WAS(-/-) effector T cells. Similarly, peripheral nTreg cells were present at normal levels in WAS patients but failed to suppress proliferation of autologous and allogeneic CD4(+) effector T cells in vitro. Thus, WASP appears to play an important role in the activation and suppressor function of nTreg cells, and a dysfunction or incorrect localization of nTreg cells may contribute to the development of autoimmunity in WAS patients.


Assuntos
Autoimunidade/imunologia , Fatores de Transcrição Forkhead/imunologia , Tolerância Imunológica/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/imunologia , Actinas/metabolismo , Animais , Diferenciação Celular/imunologia , Polaridade Celular/imunologia , Imunofluorescência , Humanos , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estatísticas não Paramétricas , Fator de Crescimento Transformador beta/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética
13.
Hum Gene Ther ; 34(17-18): 793-807, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37675899

RESUMO

ß-Thalassemia and sickle cell disease are autosomal recessive disorders of red blood cells due to mutations in the adult ß-globin gene, with a worldwide diffusion. The severe forms of hemoglobinopathies are fatal if untreated, and allogeneic bone marrow transplantation can be offered to a limited proportion of patients. The unmet clinical need and the disease incidence have promoted the development of new genetic therapies based on the engineering of autologous hematopoietic stem cells. Here, the steps of ex vivo gene therapy development are reviewed along with results from clinical trials and recent new approaches employing cutting edge gene editing tools.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia beta , Adulto , Humanos , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Anemia Falciforme/genética , Anemia Falciforme/terapia , Talassemia beta/genética , Talassemia beta/terapia , Terapia Genética , Edição de Genes
14.
Mol Ther Nucleic Acids ; 32: 229-246, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090420

RESUMO

Sickle cell disease (SCD) is due to a mutation in the ß-globin gene causing production of the toxic sickle hemoglobin (HbS; α2ßS 2). Transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) transduced with lentiviral vectors (LVs) expressing an anti-sickling ß-globin (ßAS) is a promising treatment; however, it is only partially effective, and patients still present elevated HbS levels. Here, we developed a bifunctional LV expressing ßAS3-globin and an artificial microRNA (amiRNA) specifically downregulating ßS-globin expression with the aim of reducing HbS levels and favoring ßAS3 incorporation into Hb tetramers. Efficient transduction of SCD HSPCs by the bifunctional LV led to a substantial decrease of ßS-globin transcripts in HSPC-derived erythroid cells, a significant reduction of HbS+ red cells, and effective correction of the sickling phenotype, outperforming ßAS gene addition and BCL11A gene silencing strategies. The bifunctional LV showed a standard integration profile, and neither HSPC viability, engraftment, and multilineage differentiation nor the erythroid transcriptome and miRNAome were affected by the treatment, confirming the safety of this therapeutic strategy. In conclusion, the combination of gene addition and gene silencing strategies can improve the efficacy of current LV-based therapeutic approaches without increasing the mutagenic vector load, thus representing a novel treatment for SCD.

15.
N Engl J Med ; 360(5): 447-58, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19179314

RESUMO

BACKGROUND: We investigated the long-term outcome of gene therapy for severe combined immunodeficiency (SCID) due to the lack of adenosine deaminase (ADA), a fatal disorder of purine metabolism and immunodeficiency. METHODS: We infused autologous CD34+ bone marrow cells transduced with a retroviral vector containing the ADA gene into 10 children with SCID due to ADA deficiency who lacked an HLA-identical sibling donor, after nonmyeloablative conditioning with busulfan. Enzyme-replacement therapy was not given after infusion of the cells. RESULTS: All patients are alive after a median follow-up of 4.0 years (range, 1.8 to 8.0). Transduced hematopoietic stem cells have stably engrafted and differentiated into myeloid cells containing ADA (mean range at 1 year in bone marrow lineages, 3.5 to 8.9%) and lymphoid cells (mean range in peripheral blood, 52.4 to 88.0%). Eight patients do not require enzyme-replacement therapy, their blood cells continue to express ADA, and they have no signs of defective detoxification of purine metabolites. Nine patients had immune reconstitution with increases in T-cell counts (median count at 3 years, 1.07x10(9) per liter) and normalization of T-cell function. In the five patients in whom intravenous immune globulin replacement was discontinued, antigen-specific antibody responses were elicited after exposure to vaccines or viral antigens. Effective protection against infections and improvement in physical development made a normal lifestyle possible. Serious adverse events included prolonged neutropenia (in two patients), hypertension (in one), central-venous-catheter-related infections (in two), Epstein-Barr virus reactivation (in one), and autoimmune hepatitis (in one). CONCLUSIONS: Gene therapy, combined with reduced-intensity conditioning, is a safe and effective treatment for SCID in patients with ADA deficiency. (ClinicalTrials.gov numbers, NCT00598481 and NCT00599781.)


Assuntos
Adenosina Desaminase/genética , Antígenos CD34/genética , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/deficiência , Células da Medula Óssea/imunologia , Pré-Escolar , Terapia Combinada , Seguimentos , Vetores Genéticos , Humanos , Lactente , Contagem de Linfócitos , Retroviridae , Imunodeficiência Combinada Severa/imunologia , Transdução Genética , Condicionamento Pré-Transplante
17.
J Allergy Clin Immunol ; 127(6): 1368-75.e8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21477850

RESUMO

BACKGROUND: Gene therapy (GT) with hematopoietic stem cells is a promising treatment for inherited immunodeficiencies. OBJECTIVES: Limited information is available on the relative contribution of de novo thymopoiesis and peripheral expansion to T-cell reconstitution after GT as well as on the potential effects of gene transfer on hematopoietic stem cells and lymphocyte replicative lifespan. We studied these issues in patients affected by adenosine deaminase severe combined immune deficiency after low-intensity conditioning and reinfusion of retrovirally transduced autologous CD34(+) cells. METHODS: Immunophenotype, proliferative status, telomere length, and T-cell receptor excision circles were investigated at early and late time points (up to 9 years) after GT treatment. Control groups consisted of pediatric healthy donors and patients undergoing allogeneic bone marrow transplantation (BMT). RESULTS: We observed no telomere shortening in the bone marrow compartment and in granulocytes, whereas peripheral blood naive T cells from both GT and BMT patients showed a significant reduction in telomere length compared with healthy controls. This was in agreement with the presence of a high fraction of actively cycling naive and memory T cells and lower T-cell receptor excision circles. CONCLUSION: These data indicate that T-cell homeostatic expansion contributes substantially to immune reconstitution, like BMT, and is not associated with senescence in the stem cell compartment.


Assuntos
Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Subpopulações de Linfócitos T/imunologia , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Adulto , Agamaglobulinemia/genética , Agamaglobulinemia/imunologia , Agamaglobulinemia/terapia , Transplante de Medula Óssea , Estudos de Casos e Controles , Ciclo Celular , Senescência Celular/genética , Criança , Granulócitos/patologia , Humanos , Memória Imunológica , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Retroviridae/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/terapia , Subpopulações de Linfócitos T/patologia , Telômero/genética , Transplante Autólogo , Transplante Homólogo
18.
J Allergy Clin Immunol ; 125(2): 439-448.e8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20159256

RESUMO

BACKGROUND: The Wiskott-Aldrich syndrome (WAS) is a rare genetic disease characterized by thrombocytopenia, immunodeficiency, autoimmunity, and hematologic malignancies. Secondary mutations leading to re-expression of WAS protein (WASP) are relatively frequent in patients with WAS. OBJECTIVE: The tissue distribution and function of revertant cells were investigated in a novel case of WAS gene secondary mutation. METHODS: A vast combination of approaches was used to characterize the second-site mutation, to investigate revertant cell function, and to track their distribution over a 18-year clinical follow-up. RESULTS: The WAS gene secondary mutation was a 4-nucleotide insertion, 4 nucleotides downstream of the original deletion. This somatic mutation allowed the T-cell-restricted expression of a stable, full-length WASP with a 3-amino acid change compared with the wild-type protein. WASP(+) T cells appeared early in the spleen (age 10 years) and were highly enriched in a mesenteric lymph node at a later time (age 23 years). Revertant T cells had a diversified T-cell-receptor repertoire and displayed in vitro and in vivo selective advantage. They proliferated and produced cytokines normally on T-cell-receptor stimulation. Consistently, the revertant WASP correctly localized to the immunologic synapse and to the leading edge of migrating T cells. CONCLUSION: Despite the high proportion of functional revertant T cells, the patient still has severe infections and autoimmune disorders, suggesting that re-expression of WASP in T cells is not sufficient to normalize immune functions fully in patients with WAS.


Assuntos
Tecido Linfoide/imunologia , Linfócitos T/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Adulto , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Separação Celular , Análise Mutacional de DNA , Citometria de Fluxo , Humanos , Tecido Linfoide/citologia , Masculino , Microscopia Confocal , Dados de Sequência Molecular , Mosaicismo , Mutação , Reação em Cadeia da Polimerase
19.
J Clin Invest ; 117(8): 2233-40, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17671653

RESUMO

Gene transfer into HSCs is an effective treatment for SCID, although potentially limited by the risk of insertional mutagenesis. We performed a genome-wide analysis of retroviral vector integrations in genetically corrected HSCs and their multilineage progeny before and up to 47 months after transplantation into 5 patients with adenosine deaminase-deficient SCID. Gene-dense regions, promoters, and transcriptionally active genes were preferred retroviral integrations sites (RISs) both in preinfusion transduced CD34(+) cells and in vivo after gene therapy. The occurrence of insertion sites proximal to protooncogenes or genes controlling cell growth and self renewal, including LMO2, was not associated with clonal selection or expansion in vivo. Clonal analysis of long-term repopulating cell progeny in vivo revealed highly polyclonal T cell populations and shared RISs among multiple lineages, demonstrating the engraftment of multipotent HSCs. These data have important implications for the biology of retroviral vectors, the dynamics of genetically modified HSCs, and the safety of gene therapy.


Assuntos
Adenosina Desaminase , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Mutagênese Insercional , Retroviridae , Imunodeficiência Combinada Severa/terapia , Integração Viral/genética , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Desaminase/genética , Antígenos CD34 , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Proteínas com Domínio LIM , Masculino , Metaloproteínas/genética , Células-Tronco Multipotentes/metabolismo , Proteínas Proto-Oncogênicas , Fatores de Risco , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Linfócitos T/metabolismo , Transplante Autólogo
20.
Mol Ther ; 17(6): 1073-82, 2009 06.
Artigo em Inglês | MEDLINE | ID: mdl-19259069

RESUMO

Wiskott-Aldrich Syndrome (WAS) is a life-threatening X-linked disease characterized by immunodeficiency, thrombocytopenia, autoimmunity, and malignancies. Gene therapy could represent a therapeutic option for patients lacking a suitable bone marrow (BM) donor. In this study, we analyzed the long-term outcome of WAS gene therapy mediated by a clinically compatible lentiviral vector (LV) in a large cohort of was(null) mice. We demonstrated stable and full donor engraftment and Wiskott-Aldrich Syndrome protein (WASP) expression in various hematopoietic lineages, up to 12 months after gene therapy. Importantly, we observed a selective advantage for T and B lymphocytes expressing transgenic WASP. T-cell receptor (TCR)-driven T-cell activation, as well as B-cell's ability to migrate in response to CXCL13, was fully restored. Safety was evaluated throughout the long-term follow-up of primary and secondary recipients of WAS gene therapy. WAS gene therapy did not affect the lifespan of treated animals. Both hematopoietic and nonhematopoietic tumors arose, but we excluded the association with gene therapy in all cases. Demonstration of long-term efficacy and safety of WAS gene therapy mediated by a clinically applicable LV is a key step toward the implementation of a gene therapy clinical trial for WAS.


Assuntos
Terapia Genética/efeitos adversos , Terapia Genética/métodos , Síndrome de Wiskott-Aldrich/terapia , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Western Blotting , Feminino , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Reação em Cadeia da Polimerase , Linfócitos T/metabolismo , Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa