RESUMO
Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2. We find that Mer3 also forms a previously undescribed complex with the recombination regulating factors Top3 and Rmi1 and that this interaction is competitive with Sgs1BLM helicase. Using in vitro reconstituted D-loop assays we show that Mer3 inhibits the anti-recombination activity of Sgs1 helicase, but only in the presence of Dmc1. Thus we provide a mechanism whereby Mer3 interacts with a network of proteins to protect Dmc1 derived D-loops from dissolution.
Assuntos
DNA Helicases , Recombinação Homóloga , Meiose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Troca Genética , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Ligação Proteica , Dobramento de Proteína , RecQ Helicases/antagonistas & inibidores , RecQ Helicases/química , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligação CompetitivaRESUMO
Obesity represents a worldwide health challenge, and the condition is accompanied by elevated risk of cardiovascular diseases caused by metabolic dysfunction and proinflammatory adipokines. Among those, the immune-modulatory cathelicidin antimicrobial peptide (human: CAMP; murine: CRAMP) might contribute to the interaction of the innate immune system and metabolism in these settings. We investigated systemic CAMP/CRAMP levels in experimental murine models of atherosclerosis, myocardial infarction and cardiovascular patients. Atherosclerosis was induced in low-density lipoprotein receptor-deficient (Ldlr-/-) mice by high-fat diet (HFD). C57BL/6J wild-type mice were subjected to myocardial infarction by permanent or transient left anterior descending (LAD)-ligation. Cramp gene expression in murine organs and tissues was investigated via real-time PCR. Blood samples of 234 adult individuals with or without coronary artery disease (CAD) were collected. Human and murine CAMP/CRAMP serum levels were quantified by ELISA. Atherosclerotic mice exhibited significantly increased CRAMP serum levels and induced Cramp gene expression in the spleen and liver, whereas experimental myocardial infarction substantially decreased CRAMP serum levels. Human CAMP serum quantities were not significantly affected by CAD while being correlated with leukocytes and pro-inflammatory cytokines. Our data show an influence of cathelicidin in experimental atherosclerosis, myocardial infarction, as well as in patients with CAD. Further studies are needed to elucidate the pathophysiological mechanism.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Infarto do Miocárdio , Adulto , Animais , Humanos , Camundongos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Recent investigation has revealed the significant role of Cathelicidin antimicrobial peptide (CAMP) in infection defense and innate immunity processes in adipose tissue. Meanwhile, knowledge of its regulation and functions in metabolic contexts as an adipokine remains sparce. The present study investigated the postprandial regulation of circulating CAMP levels during oral glucose tolerance tests (OGTTs). Eighty-six metabolically healthy volunteers participated in a standardized 75 g-2 h-OGTT setting. The effects of exogenous glucose, insulin, and incretins on CAMP expression in human adipocyte culture (cell-line SGBS) were studied in vitro. CAMP concentrations in blood serum samples were measured by ELISA techniques and adipocyte gene expression levels were quantified by real-time PCR. Of note, base-line CAMP serum quantities were negatively correlated with HDL cholesterol levels as well as with the anti-inflammatory adipokine adiponectin. During the 2 h following glucose ingestion, a significant rise in circulating CAMP concentrations was observed in considerable contrast to reduced quantities of fatty acid binding proteins (FABP) 2 and 4 and dipeptidyl peptidase 4 (DPP4). In SGBS adipocytes, neither differing glucose levels nor insulin or incretin treatment significantly induced CAMP mRNA levels. According to our data, glucose represents a positive postprandial regulator of systemic CAMP. This effect apparently is not mediated by the regulatory impact of glucose metabolism on adipocyte CAMP expression.
Assuntos
Catelicidinas , Glucose , Humanos , Teste de Tolerância a Glucose , Catelicidinas/farmacologia , Incretinas , Insulina , Insulina Regular Humana , AdipocinasRESUMO
Understanding the complex interactions between metabolism and the immune system ("metaflammation") is crucial for the identification of key immunomodulatory factors as potential therapeutic targets in obesity and in cardiovascular diseases. Cathelicidin antimicrobial peptide (CAMP) is an important factor of innate immunity and is expressed in adipocytes. CAMP, therefore, might play a role as an adipokine in metaflammation and adipose inflammation. TNFα, cell-free nucleic acids (cfDNA), and toll-like receptor (TLR) 9 are components of the innate immune system and are functionally active in adipose tissue. The aim of the present study was to investigate the impact of TNFα and cfDNA on CAMP expression in adipocytes. Since cfDNA acts as a physiological TLR9 agonist, we additionally investigated TLR9-mediated CAMP regulation in adipocytes and adipose tissue. CAMP gene expression in murine 3T3-L1 and human SGBS adipocytes and in murine and human adipose tissues was quantified by real-time PCR. Adipocyte inflammation was induced in vitro by TNFα and cfDNA stimulation. Serum CAMP concentrations in TLR9 knockout (KO) and in wildtype mice were quantified by ELISA. In primary adipocytes of wildtype and TLR9 KO mice, CAMP gene expression was quantified by real-time PCR. CAMP gene expression was considerably increased in 3T3-L1 and SGBS adipocytes during differentiation. TNFα significantly induced CAMP gene expression in mature adipocytes, which was effectively antagonized by inhibition of PI3K signaling. Cell-free nucleic acids (cfDNA) significantly impaired CAMP gene expression, whereas synthetic agonistic and antagonistic TLR9 ligands had no effect. CAMP and TLR9 gene expression were correlated positively in murine and human subcutaneous but not in intra-abdominal/visceral adipose tissues. Male TLR9 knockout mice exhibited lower systemic CAMP concentrations than wildtype mice. CAMP gene expression levels in primary adipocytes did not significantly differ between wildtype and TLR9 KO mice. These findings suggest a regulatory role of inflammatory mediators, such as TNFα and cfDNA, in adipocytic CAMP expression as a novel putative molecular mechanism in adipose tissue innate immunity.
Assuntos
Ácidos Nucleicos Livres , Receptor Toll-Like 9 , Masculino , Camundongos , Humanos , Animais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Catelicidinas/genética , Catelicidinas/farmacologia , Catelicidinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adipócitos/metabolismo , Inflamação/metabolismo , Obesidade/genética , Obesidade/metabolismo , Expressão Gênica , Ácidos Nucleicos Livres/metabolismo , Regulação da Expressão Gênica , Células 3T3-L1RESUMO
BACKGROUND: The postprandial regulation of angiopoietin-like proteins (Angptls) and their expression in adipocytes is poorly characterized. OBJECTIVE: Circulating Angptl3 and 4 were analyzed in healthy individuals undergoing either an oral lipid tolerance test (OLTT; n = 98) or an oral glucose tolerance test (OGTT; n = 99). Venous blood was drawn after 0, 2, 4, and 6 h during OLTT and after 0, 1, and 2 h during OGTT. Anthropometric and laboratory parameters were assessed and concentrations of Angptls were quantified by enzyme-linked immunosorbent assay. Angptl gene expression in 3T3-L1 adipocytes and in murine adipose tissues and cellular fractions was analyzed by quantitative real-time PCR. RESULTS: Angptl3 concentrations significantly decreased while Angptl4 levels continuously increased during OLTT. Both proteins remained unaffected during OGTT. Angptl3 and Angptl4 were expressed in murine subcutaneous and visceral AT with higher mRNA levels in mature adipocytes when compared to the stroma-vascular cell fraction. Both proteins were strongly induced during 3T3-L1 adipocyte differentiation and they were unresponsive to glucose in mature fat cells. Adipocyte Angptl3 (but not Angptl4) mRNA expression was inhibited by the polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid, whereas nine types of dietary fatty acids remained without any effect. CONCLUSIONS: There is evidence of short-time regulation of Angptl3/4 levels upon metabolic stress. Angptl4 expression is high and Angptl3 expression is low in AT and restricted mainly to mature adipocytes without any differences concerning fat compartments. Whereas dietary fatty acids and glucose are without any effect, omega-3/-6-polyunsaturated fatty acids inhibited Anptl3 expression in adipocytes.
Assuntos
Proteína 3 Semelhante a Angiopoietina , Glucose , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Ácidos Graxos , Teste de Tolerância a Glucose , Humanos , Camundongos , RNA MensageiroRESUMO
Endosome-localized Toll-like receptors (TLRs) 3 and 9 are expressed and functionally active in adipocytes. The functionality and role of TLR7 in adipocyte biology and innate immunity of adipose tissue (AT) is poorly characterized. We analyzed TLR7 mRNA and protein expression in murine 3T3-L1 and primary adipocytes, in co-cultures of 3T3-L1 adipocytes with murine J774A.1 monocytes and in human AT. The effects of TLR7 agonists imiquimod (IMQ) and cell-free nucleic acids (cfDNA) on adipokine concentration in cell-culture supernatants and gene expression profile were investigated. We found that TLR7 expression is strongly induced during adipocyte differentiation. TLR7 gene expression in adipocytes and AT stroma-vascular cells (SVC) seems to be independent of TLR9. IMQ downregulates resistin concentration in adipocyte cell-culture supernatants and modulates gene expression of glucose transporter Glut4. Adipocyte-derived cfDNA reduces adiponectin and resistin in cell-culture supernatants and potentially inhibits Glut4 gene expression. The responsiveness of 3T3-L1 adipocytes to imiquimod is preserved in co-culture with J774A.1 monocytes. Obesity-related, adipocyte-derived cfDNA engages adipocytic pattern recognition receptors (PRRs), modulating AT immune and metabolic homeostasis during adipose inflammation.
Assuntos
Ácidos Nucleicos Livres , Resistina , Células 3T3-L1 , Adipócitos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Diferenciação Celular/genética , Ácidos Nucleicos Livres/metabolismo , Humanos , Imiquimode/farmacologia , Camundongos , Resistina/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismoRESUMO
Allocation of morbidly obese patients to either conservative therapy options-such as lifestyle intervention and/or low-calorie diet (LCD)-or to bariatric surgery-preferably sleeve gastrectomy or Roux-en-Y gastric bypass (RYGB)-represents a crucial decision in order to obtain sustainable metabolic improvement and weight loss. The present study encompasses 160 severely obese patients, 81 of whom participated in an LCD program, whereas 79 underwent RYGB surgery. The post-interventional dynamics of physiologically relevant adipokines and hepatokines (ANGPTL4, CCL5, GDF15, GPNMB, IGFBP6), as well as their correlation with fat mass reduction and improvement of liver fibrosis, were analyzed. Systemic GDF15 was characterized as an excellent predictive marker for hepatic fibrosis as well as type 2 diabetes mellitus. Of note, baseline GDF15 serum concentrations were positively correlated with NFS and HbA1c levels after correction for BMI, suggesting GDF15 as a BMI-independent marker of hepatic fibrosis and T2D in obese individuals. Specific GDF15 cut-off values for both diseases were calculated. Overall, the present data demonstrate that circulating levels of specific adipokines and hepatokines are regulated with therapy-induced fat loss and metabolic improvement and might, therefore, serve as biomarkers for the success of obesity therapy strategies.
Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Humanos , Obesidade Mórbida/diagnóstico , Obesidade Mórbida/cirurgia , Adipocinas , Diabetes Mellitus Tipo 2/etiologia , Biomarcadores , Cirrose Hepática/diagnóstico , Cirrose Hepática/terapia , Cirrose Hepática/etiologia , Glicoproteínas de MembranaRESUMO
BACKGROUND AND AIM: CAMP (Cathelicidin antimicrobial peptide) expression in adipocytes is regulated by Toll-like receptor (TLR) agonists. Secreted adipokines such as CTRP-3 have been suggested to participate in innate immune signaling in adipose tissue (AT). This study investigates whether TLR-induced CAMP expression in adipocytes is antagonized by CTRP-3. METHODS: 3T3-L1 adipocytes were co-stimulated with TLR agonists (LPS, MALP-2, Pam3CSK4, pI:C) and recombinant CTRP-3. In a SIRS model, C57BL/6 wild-type mice were intraperitoneally (ip) injected with recombinant CTRP-3 prior to LPS. CAMP expression was analyzed by real-time PCR in AT of wild-type mice and in AT and primary adipocytes from transgenic mice lacking adipocyte CTRP-3 expression. Comparative transcriptome analysis by RNA seq. was applied in CTRP-3 KO adipocytes. RESULTS: In vitro, CTRP-3 antagonized TLR4- and TLR1/2-induced CAMP expression in adipocytes whereas TLR3- and TLR2/6-mediated induction of CAMP was not affected. in vivo, application of exogenous CTRP-3 dose-dependently antagonized LPS-induced CAMP expression in intra-abdominal AT. CAMP expression in total AT and in primary adipocytes of subcutaneous and intra-abdominal AT did not differ between wild-type mice and transgenic mice lacking adipocyte CTRP-3 expression. CONCLUSIONS: The study suggests a hypothetical role of CAMP in host defense not only against Gram-positive bacteria sensed by TLR1/2 and TLR2/6 but also against Gram-negative bacteria sensed by TLR4 and potentially against viruses sensed by TLR3. The machinery of TLR-mediated pro-inflammatory activation of the CAMP gene in adipocytes seems to be partly modulated by secreted adipokines belonging to the growing family of C1q/TNF-related proteins such as CTRP-3.
Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Peptídeos Antimicrobianos/genética , Regulação da Expressão Gênica , Receptores Toll-Like/metabolismo , Células 3T3-L1 , Adipocinas/deficiência , Tecido Adiposo/metabolismo , Animais , Peptídeos Antimicrobianos/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Síndrome de Resposta Inflamatória Sistêmica/genética , Transcriptoma/genéticaRESUMO
CAMP (Cathelicidin antimicrobial peptide) is synthesized and secreted by adipocytes and involved in adipose tissue (AT) innate immune response and host defense of subcutaneous AT against Gram positive bacteria. Data on the regulation of CAMP in obesity and during weight loss are scarce and reference values do not exist. Serum CAMP levels (ELISA) and AT gene expression levels (quantitative real time PCR) were investigated in two large and longitudinal (12 months) cohorts of severely obese patients undergoing either a low calorie diet (LCD; n=79) or bariatric surgery (BS; n=156). The impact of metabolic factors on CAMP expression in vitro was investigated in differentiated 3T3-L1 adipocytes. CAMP serum levels significantly increased after BS but not during LCD. Females had lower CAMP serum levels and lower gene expression levels in subcutaneous AT. CAMP was positively correlated to unfavorable metabolic factors/adipokines and negatively to favorable factors/adipokines. CAMP gene expression was higher in subcutaneous than in visceral AT but serum CAMP levels were not correlated to levels of AT gene expression. While certain bile acids upregulated CAMP expression in vitro, high glucose/insulin as well as GLP-1 had an inhibitory effect. There exist gender-specific and AT compartment-specific effects on the regulation of CAMP gene expression. Weight loss induced by BS (but not by LCD) upregulated CAMP serum levels suggesting the involvement of weight loss-independent mechanisms in CAMP regulation such as bile acids, incretins and metabolic factors. CAMP might represent an adipokine at the interface between metabolism and innate immune response.
Assuntos
Tecido Adiposo/metabolismo , Peptídeos Catiônicos Antimicrobianos/sangue , Obesidade Mórbida/sangue , Obesidade Mórbida/genética , Obesidade/sangue , Obesidade/genética , Adipócitos/metabolismo , Adulto , Animais , Cirurgia Bariátrica , Estudos de Coortes , Humanos , Estudos Longitudinais , Masculino , Camundongos , Pessoa de Meia-Idade , Células NIH 3T3 , Obesidade/fisiopatologia , Obesidade/cirurgia , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Redução de Peso , CatelicidinasRESUMO
CTRP-3 (C1q/TNF-related protein-3) is an adipokine with endocrine and immunological function. The impact of adipocyte CTRP-3 production on systemic CTRP-3 concentrations and on adipocyte biology is unknown. A murine model of adipocyte CTRP-3 knockout (KO) was established (via the Cre/loxP system). Serum adipokine levels were quantified by ELISA and adipose tissue (AT) gene expression by real-time PCR. Preadipocytes were isolated from AT and differentiated into adipocytes. Comparative transcriptome analysis was applied in adipocytes and liver tissue. Body weight and AT mass were reduced in CTRP-3 KO mice together with decreased serum leptin. In primary cells from visceral AT of KO mice, expression of adiponectin, progranulin, and resistin was induced, while peroxisome proliferator activated receptor γ (PPARγ) was decreased. M1/M2 macrophage polarization markers were shifted to a more anti-inflammatory phenotype. CTRP-3 expression in AT did not contribute to serum concentrations. AT and liver morphology remained unaffected by CTRP-3 KO. Myelin transcription factor 1-like (Myt1l) was identified as a highly upregulated gene. In conclusion, adipocyte CTRP-3 has a role in adipogenesis and AT weight gain whereas adipocyte differentiation is not impaired by CTRP-3 deficiency. Since no effects on circulating CTRP-3 levels were observed, the impact of adipocyte CTRP-3 KO is limited to adipose tissue. Modified AT gene expression indicates a rather anti-inflammatory phenotype.
Assuntos
Adipócitos/citologia , Adipogenia , Adipocinas/metabolismo , Tecido Adiposo Branco/citologia , Regulação da Expressão Gênica , Adipócitos/metabolismo , Adipocinas/genética , Adipocinas/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , TranscriptomaRESUMO
One of the most recent scientific fields is the interaction between the immune system and metabolic processes. These interactions increasingly involve intracellular and extracellular signaling molecules and their receptors as well as molecular mechanisms that are used by both systems. The result of these intensive interactions is characterized by the term "metaflammation" and involves in particular, the ubiquitous adipose tissue present throughout the body. The links identified to date between the immune system and metabolism play a greater role in inflammatory rheumatic joint diseases than previously thought. In general, a markedly high body mass index (BMI) in particular, is associated with increased inflammatory activity and this is independent of the underlying disease entity. A higher BMI at the beginning of an immunomodulatory therapy also causes a more difficult response to the medication. Thus, the current scientific objective is to identify the individual "immuno-metabolic" pathways in order to apply the medications specifically to the site of action. Furthermore, all newer therapeutic agents, especially those specifically acting against individual immunological molecules, should be systematically analyzed with respect to their metabolic concomitant effects and their influence on metabolic comorbidities.
Assuntos
Obesidade , Doenças Reumáticas , Tecido Adiposo , Índice de Massa Corporal , Humanos , Inflamação/tratamento farmacológico , Doenças Reumáticas/diagnóstico , Doenças Reumáticas/tratamento farmacológico , Transdução de SinaisRESUMO
Regulation of progranulin in adipocytes and its role in inflammation is poorly understood. AIM: (i) to investigate regulation of progranulin in adipocyte differentiation and adipose tissue compartments, (ii) to address progranulin expression in two murine (C57BL/6) models of inflammation. RESULTS: Progranulin expression was induced during adipocyte differentiation. Neither estradiol nor testosterone or metabolic stimuli such as glucose and insulin modified progranulin synthesis. Fatty acids, bile acids and incretins GLP-1 and GIP-1 exerted potent and differential effects on progranulin secretion. LPS, TNF and IL6 significantly increased progranulin secretion. TLR9 agonists decreased and TLR1/2, TLR3, TLR5, and TLR2/6 ligands increased progranulin expression. TLR3-mediated progranulin induction was abrogated by inhibitors of NF-κB and PI3K pathways. Progranulin expression between murine epididymal and subcutaneous adipose tissue did not differ in total adipose tissue, in isolated adipocytes or in the stromal-vascular cell fraction (SVC). However, SVC expressed significantly higher levels of progranulin than adipocytes at all sites. In adipocytes, female mice had significantly higher progranulin expression at all sites. An intra-peritoneal LPS challenge in mice did not affect adipose tissue progranulin expression, whereas peritoneal infection by S. aureus increased progranulin expression after 24â¯h. CONCLUSIONS: There are relevant sex-, site- and cell-specific effects on progranulin gene expression that is induced during adipocyte differentiation and modulated by various inflammatory and metabolic factors. Most importantly, ligands for TLR1/2 and TLR2/6 (recognizing S. aureus) in vitro and infection by S. aureus in vivo induce progranulin expression suggesting a role of adipocytes in protection against infection by gram-positive bacteria.
Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Progranulinas/sangue , Infecções Estafilocócicas/metabolismo , Receptores Toll-Like/metabolismo , Adipócitos/imunologia , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Animais , Ácidos e Sais Biliares/farmacologia , Estradiol/farmacologia , Ácidos Graxos/farmacologia , Feminino , Regulação da Expressão Gênica/imunologia , Glucose/farmacologia , Imunidade Inata/efeitos dos fármacos , Inflamação/metabolismo , Insulina/farmacologia , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Peritonite , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Progranulinas/biossíntese , Progranulinas/genética , Progranulinas/metabolismo , Testosterona/farmacologia , Receptores Toll-Like/agonistas , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
The adipokine CTRP-3 (C1q/TNF-related protein-3) exerts anti-inflammatory and anti-diabetic effects. Its regulation in obesity and during weight loss is unknown. Serum and adipose tissue (AT) samples were obtained from patients (n = 179) undergoing bariatric surgery (BS). Moreover, patients (n = 131) participating in a low-calorie diet (LCD) program were studied. CTRP 3 levels were quantified by ELISA and mRNA expression was analyzed in AT and in 3T3-L1 adipocytes treated with bile acids and incretins. There was a persistent downregulation of CTRP-3 serum levels during weight loss. CTRP-3 expression was higher in subcutaneous than in visceral AT and serum levels of CTRP-3 were positively related to AT expression levels. A rapid decrease of circulating CTRP-3 was observed immediately upon BS, suggesting weight loss-independent regulatory mechanisms. Adipocytes CTRP-3 expression was inhibited by primary bile acid species and GLP 1. Adipocyte-specific CTRP-3 deficiency increased bile acid receptor expression. Circulating CTRP-3 levels are downregulated during weight loss, with a considerable decline occurring immediately upon BS. Mechanisms dependent and independent of weight loss cause the post-surgical decline of CTRP-3. The data strongly argue for regulatory interrelations of CTRP-3 with bile acids and incretin system.
Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Ácidos e Sais Biliares/farmacologia , Incretinas/farmacologia , Obesidade/metabolismo , Fatores de Necrose Tumoral/metabolismo , Redução de Peso , Adipócitos/efeitos dos fármacos , Adipocinas/sangue , Adipocinas/genética , Adulto , Animais , Cirurgia Bariátrica/métodos , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Fármacos Gastrointestinais/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Obesidade/sangue , Obesidade/patologia , Obesidade/cirurgia , Fatores de Necrose Tumoral/sangue , Fatores de Necrose Tumoral/genéticaRESUMO
BACKGROUND: Progranulin represents an adipokine putatively mediating insulin resistance and inflammation. Data in humans are sparse, and the source of circulating progranulin in obesity is unknown. OBJECTIVES: Serum progranulin concentrations and subcutaneous (sc) as well as visceral (vis) adipose tissue (AT) progranulin expression were quantified in a large cohort of patients with obesity undergoing bariatric surgery (BS) (n = 153) or a low-calorie diet (LCD) (n = 121). COHORTS AND METHODS: Paired serum and AT mRNA samples were obtained from patients with severe obesity undergoing BS (ROBS cohort; Research in Obesity and Bariatric Surgery). Serum progranulin was measured by ELISA in both cohorts, and AT mRNA expression was analysed by quantitative real-time PCR in bariatric patients. RESULTS: There was no gender-specific effect in serum progranulin or AT progranulin expression. Importantly, circulating progranulin was independent from adipose tissue gene expression in paired samples. sc AT progranulin expression was higher than in vis AT (P = 0.027), and there was a positive correlation between sc AT and vis AT gene expression (P < 0.001; r = +0.34). Serum progranulin strongly and rapidly increased after BS within 3 days and remained elevated up to 12 months. Serum progranulin was strongly correlated with serum CTRP-3 levels. CONCLUSIONS: The present study provides detailed progranulin gene expression data in sc and vis AT in a large, prospective and observational cohort of patients with severe obesity. Serum progranulin concentrations are not predicted by sc or vis AT progranulin gene expression. Thus, AT seems not to be the main source of circulating progranulin levels in obesity.
Assuntos
Expressão Gênica , Gordura Intra-Abdominal/metabolismo , Obesidade/sangue , Progranulinas/sangue , Gordura Subcutânea/metabolismo , Cirurgia Bariátrica , Restrição Calórica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/terapia , Progranulinas/análise , RNA Mensageiro/análiseRESUMO
BACKGROUND: C1q/TNF-related protein-3 (CTRP-3) represents a novel anti-inflammatory and antidiabetic adipokine secreted by adipose tissue. The physiological and postprandial regulation of CTRP-3 remains obscure and it is not known whether CTRP-3 is permeable to the brain. The postprandial regulation of CTRP-3 during an oral glucose tolerance test (n = 100) and an oral lipid tolerance test (n = 100) in humans was investigated. Moreover, CTRP-3 concentrations were measured in paired serum and cerebrospinal fluid (CSF) samples of patients (n = 270) undergoing neurological evaluation. The expression of CTRP-3 mRNA was investigated in adipocytes upon stimulation with glucose, sex hormones and a broad panel of fatty acids. MATERIALS AND METHODS: Serum and CSF CTRP-3 concentrations were measured by ELISA. 3T3-L1 adipocytes were used for stimulation experiments. CTRP-3 mRNA expression was quantified by using real-time PCR analysis. RESULTS: CTRP-3 is present in human cerebrospinal fluid with a mean CSF/serum ratio of 110 ± 64 × 10-3 . CTRP-3 is not regulated postprandially by carbohydrates or lipids in the healthy state. Females have slightly higher levels of CTRP-3 when compared to males. A significant and positive correlation of CTRP-3 to LDL cholesterol serum levels is reproducible in several cohorts and deserves further mechanistic investigation. Whereas glucose concentrations do not influence CTRP-3 mRNA expression in 3T3-L1 adipocytes in vitro, fatty acids differentially modulate CTRP-3 expression. CONCLUSIONS: The novel adipokine CTRP-3 is detectable in human cerebrospinal fluid (proof of principle). Due to its blood-brain barrier permeability, CTRP-3 represents a novel putative candidate for a physiological regulator molecule affecting central nervous functions.
Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Glucose/farmacologia , Lipídeos/farmacologia , Fatores de Necrose Tumoral/líquido cefalorraquidiano , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adolescente , Adulto , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/administração & dosagem , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Necrose Tumoral/sangue , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Adulto JovemRESUMO
Background. The role of adipose tissue in systemic inflammation during bacterial infection is unclear. Effects of Staphylococcus aureus infection on adipocytes in rodent models of experimental endocarditis and peritonitis, the impact of S. aureus infection on gene expression in epididymal and subcutaneous adipose tissue, and effects of S. aureus infection on the toll-like receptor-2- (TLR2-) cathelicidin pathway in vivo and in vitro were investigated. Material and methods. The rat model of catheter-induced S. aureus endocarditis and the mouse model of S. aureus-induced peritonitis were used for infection experiments, gene expression profiling in adipose tissue, and measurement of cytokines. 3T3-L1 adipocytes were analyzed for expression of the TLR2-cathelicidin pathway. Results. Upon systemic bacterial infection by S. aureus, there is a shift from anti- to proinflammatory cytokines in serum and in adipose tissue gene expression. The TLR2-cathelicidin pathway is increasingly expressed during adipocyte differentiation in vitro and is induced upon stimulation by synthetic lipopeptides. Conclusions. Systemic infection by Gram-positive bacteria induces proinflammatory transformation of adipose tissue sites distinct from infection sites, documented on the levels of gene expression and secreted mediators. The TLR2-cathelicidine pathway is expressed and highly inducible in adipocytes in vitro. Lipopeptides are important immune-modulators of adipocytes in both gene expression and protein secretion.
Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Imunidade Inata/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Células 3T3-L1 , Adipocinas/sangue , Animais , Citocinas/sangue , Endocardite/imunologia , Endocardite/metabolismo , Endocardite/microbiologia , Ensaio de Imunoadsorção Enzimática , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Imunidade Inata/genética , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/microbiologia , Ratos , Infecções Estafilocócicas/metabolismoRESUMO
CONTEXT: Data on quantification and regulation of adipsin in human cerebrospinal fluid (CSF) are sparse, and the physiological role of adipsin as an adipokine crossing the blood-brain barrier (BBB) is uncertain. OBJECTIVES: This study quantified adipsin concentrations in paired serum and CSF samples of patients undergoing neurological evaluation and spinal puncture. DESIGN: A total of 270 consecutive patients with specified neurological diagnosis were included in this study without prior selection. MAIN OUTCOME MEASURES: Adipsin serum and CSF concentrations were measured by ELISA. A variety of serum and CSF routine parameters were measured by standard procedures. Anthropometric data, medication and patient history were available. RESULTS: Adipsin concentrations ranged between 467 and 5148 ng/ml in serum and between 4·2 and 133·5 ng/ml in CSF. Serum adipsin concentrations were correlated positively with respective CSF concentrations and were approximately 40-fold higher when compared to CSF. The mean CSF/serum ratio for adipsin was 27 ± 22 × 10-3 . Serum and CSF adipsin levels were independent of gender and significantly higher in overweight/obese individuals. Serum and CSF adipsin levels correlated significantly with age and were higher in patients suffering from diabetes mellitus or hypertension. CSF adipsin concentrations showed a significant correlation with markers of inflammation in CSF, but not with CSF total cell count or the presence of oligoclonal bands. Patients suffering from infectious diseases had higher CSF levels of adipsin than multiple sclerosis patients. CONCLUSIONS: Adipsin is present in human CSF under pathophysiological conditions. The positive correlation between serum and CSF concentrations, the positive correlation between the CSF/serum ratios for adipsin and total protein and the lack of association with CSF cell count argue against an autochthonous production in the central nervous system. In contrast, the present data argue for a significant BBB permeability to adipsin.
RESUMO
BACKGROUND: Adipokines bearing the potential to cross the blood-brain barrier (BBB) are promising candidates for the endocrine regulation of central nervous processes and of a postulated fat-brain axis. Resistin and progranulin concentrations in paired serum and cerebrospinal fluid (CSF) samples of patients undergoing neurological evaluation and spinal puncture were investigated. MATERIALS AND METHODS: Samples of n = 270 consecutive patients with various neurological diseases were collected without prior selection. Adipokine serum and CSF concentrations were measured by enzyme-linked immunosorbent assay and serum and CSF routine parameters by standard procedures. Anthropometric data, medication and patient history were available. RESULTS: Serum levels of resistin and progranulin were positively correlated among each other, with respective CSF levels, low-density lipoprotein cholesterol levels and markers of systemic inflammation. CSF resistin concentrations were generally low. Progranulin CSF concentrations and CSF/serum progranulin ratio were significantly higher in patients with infectious diseases, with disturbed BBB function and with elevated CSF cell count and presence of oligoclonal bands. Both adipokines are able to cross the BBB depending on a differing patency that increases with increasing grade of barrier dysfunction. Whereas resistin represents a systemic marker of inflammation, CSF progranulin levels strongly depend on the underlying disease and dysfunction of blood-CSF barrier. CONCLUSIONS: Resistin and progranulin represent novel and putative regulators of the fat-brain axis by their ability to cross the BBB under physiological and pathophysiological conditions. The presented data provide insight into the characteristics of BBB function regarding progranulin and resistin and the basis for future establishment of normal values for CSF concentrations and CSF/serum ratios.
Assuntos
Infecções do Sistema Nervoso Central/líquido cefalorraquidiano , Transtornos Cerebrovasculares/líquido cefalorraquidiano , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Resistina/líquido cefalorraquidiano , Adulto , Idoso , Barreira Hematoencefálica/metabolismo , Índice de Massa Corporal , Contagem de Células , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos de Coortes , Doenças dos Nervos Cranianos/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática , Epilepsia/líquido cefalorraquidiano , Dor Facial/líquido cefalorraquidiano , Feminino , Cefaleia/líquido cefalorraquidiano , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino , Pessoa de Meia-Idade , Progranulinas , Resistina/sangue , Triglicerídeos/sangueRESUMO
OBJECTIVES: Due to their role in inflammatory metabolic diseases, we hypothesised that free fatty acids (FFA) are also involved in inflammatory joint diseases. To test this hypothesis, we analysed the effect of FFA on synovial fibroblasts (SF), human chondrocytes and endothelial cells. We also investigated whether the toll-like receptor 4 (TLR4), which can contribute to driving arthritis, is involved in FFA signalling. METHODS: Rheumatoid arthritis SF, osteoarthritis SF, psoriatic arthritis SF, human chondrocytes and endothelial cells were stimulated in vitro with different FFA. Immunoassays were used to quantify FFA-induced protein secretion. TLR4 signalling was inhibited extracellularly and intracellularly. Fatty acid translocase (CD36), responsible for transporting long-chain FFA into the cell, was also inhibited. RESULTS: In rheumatoid arthritis synovial fibroblasts (RASF), FFA dose-dependently enhanced the secretion of the proinflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, as well as the matrix-degrading enzymes pro-MMP1 and MMP3. The intensity of the response was mainly dependent on the patient rather than on the type of disease. Both saturated and unsaturated FFA showed similar effects on RASF, while responses to the different FFA varied for human chondrocytes and endothelial cells. Extracellular and intracellular TLR4 inhibition as well as fatty acid transport inhibition blocked the palmitic acid-induced IL-6 secretion of RASF. CONCLUSIONS: The data show that FFA are not only metabolic substrates but may also directly contribute to articular inflammation and degradation in inflammatory joint diseases. Moreover, the data suggest that, in RASF, FFA exert their effects via TLR4 and require extracellular and intracellular access to the TLR4 receptor complex.
Assuntos
Artrite Psoriásica/imunologia , Artrite Reumatoide/imunologia , Condrócitos/imunologia , Células Endoteliais/imunologia , Ácidos Graxos não Esterificados/imunologia , Fibroblastos/imunologia , Mediadores da Inflamação/imunologia , Osteoartrite/imunologia , Transdução de Sinais/imunologia , Antígenos CD36/efeitos dos fármacos , Antígenos CD36/metabolismo , Quimiocina CCL2/efeitos dos fármacos , Quimiocina CCL2/imunologia , Condrócitos/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ácidos Graxos não Esterificados/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-6/imunologia , Interleucina-8/efeitos dos fármacos , Interleucina-8/imunologia , Metaloproteinase 1 da Matriz/efeitos dos fármacos , Metaloproteinase 1 da Matriz/imunologia , Metaloproteinase 3 da Matriz/efeitos dos fármacos , Metaloproteinase 3 da Matriz/imunologia , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/citologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismoRESUMO
BACKGROUND: The C1q/TNF-related proteins comprise a growing family of adiponectin paralogous proteins. CTRP-3 represents a novel adipokine with strong expression in adipose tissue and was shown to inhibit chemokine and cytokine release in adipocytes and monocytes in vitro. The aim of the study was to gain the proof of principle that CTRP-3 is a potent anti-inflammatory adipokine in vivo. METHODS: C57BL/6N mice were treated intraperitoneally (i.p.) with bacterial lipopolysaccharide (LPS) for 2h. The effects of a 30 min pre-treatment with CTRP-3 i.p. or intravenously (i.v.) on systemic and on epididymal, perirenal and subcutaneous adipose tissue inflammation was analyzed via real-time RT-PCR, ELISA and Western blot analysis. RESULTS: LPS (1 µg i.p.) significantly increased serum IL-6 and MIP-2 levels as well as epididymal adipose tissue expression of IL-6 and MIP-2 in mice, whereas CTRP-3 (10 µg i.p.) alone or PBS (i.p.) had no effect. Pre-treatment of mice by CTRP-3 i.p. prior to LPS application significantly attenuated LPS-induced cytokine levels but had no effect on adipose tissue cytokine mRNA expression. In contrast to i.p. application of CTRP-3, systemic i.v. application was not sufficient to inhibit LPS-induced cytokine levels or mRNA tissue expression. CTRP-3 given i.p. significantly attenuated LPS-induced phosphorylation of Erk-1/-2 in inguinal adipose tissue. CONCLUSION: The present study shows the proof of principle that the novel adipokine CTRP-3 is a potent inhibitor of LPS-induced systemic inflammation and LPS-induced signaling in adipose tissue in vivo.