Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Angew Chem Int Ed Engl ; 62(21): e202302208, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821699

RESUMO

As alternative energy sources are essential to reach a climate-neutral economy, hydrogen peroxide (H2 O2 ) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2 O2 ORR electrocatalyst is yet a challenge, making the design of-ideally-bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis-[cobalt(III) corrole] complex CoII TP[CoIII C]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two-electron transfer generated H2 O2 , an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm-2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec-1 combined with superior stability.

2.
European J Org Chem ; 2021(14): 2114-2120, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34248412

RESUMO

We report on the first cobalt corrole that effectively mediates the homogeneous hydrogenation of structurally diverse nitroarenes to afford the corresponding amines. The given catalyst is easily assembled prior to use from 4-tert-butylbenzaldehyde and pyrrole followed by metalation of the resulting corrole macrocycle with cobalt(II) acetate. The thus-prepared complex is self-contained in that the hydrogenation protocol is free from the requirement for adding any auxiliary reagent to elicit the catalytic activity of the applied metal complex. Moreover, a containment system is not required for the assembly of the hydrogenation reaction set-up as both the autoclave and the reaction vessels are readily charged under a regular laboratory atmosphere.

3.
Angew Chem Int Ed Engl ; 59(26): 10527-10534, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32281187

RESUMO

The controlled electrochemical reduction of carbon dioxide to value added chemicals is an important strategy in terms of renewable energy technologies. Therefore, the development of efficient and stable catalysts in an aqueous environment is of great importance. In this context, we focused on synthesizing and studying a molecular MnIII -corrole complex, which is modified on the three meso-positions with polyethylene glycol moieties for direct and selective production of acetic acid from CO2 . Electrochemical reduction of MnIII leads to an electroactive MnII species, which binds CO2 and stabilizes the reduced intermediates. This catalyst allows to electrochemically reduce CO2 to acetic acid in a moderate acidic aqueous medium (pH 6) with a selectivity of 63 % and a turn over frequency (TOF) of 8.25 h-1 , when immobilized on a carbon paper (CP) electrode. In terms of high selectivity towards acetate, we propose the formation and reduction of an oxalate type intermediate, stabilized at the MnIII -corrole center.

4.
Chemistry ; 23(70): 17721-17726, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-28758266

RESUMO

The chemical synthesis and biological activity of novel functionalized imidazoquinoline derivatives (ImQ) to generate Toll-like receptor (TLR) 7/8 specific prodrugs are presented. In vivo activity of ImQs to induce inflammation was confirmed in zebrafish larvae. After covalent ligation to fully biodegradable polyphosphazenes (ImQ-polymer), the macromolecular prodrugs were designed to undergo intracellular pH-sensitive release of ImQs to induce inflammation through binding to endosomal TLR7/8 (danger signal). We showed ImQ dissociation from prodrugs at a pH 5 pointing towards endosomal prodrug degradability. ImQ-polymers strongly activated ovalbumin-specific T cells in murine splenocytes as shown by increased proliferation and expression of the IL-2 receptor (CD25) on CD8+ T cells accompanied by strong IFN-γ release. ImQ prodrugs presented here are suggested to form the basis of novel nanovaccines, for example, for intravenous or intratumoral cancer immunotherapeutic applications to trigger physiological antitumor immune responses.


Assuntos
Pró-Fármacos/química , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Animais , Animais Geneticamente Modificados/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/etiologia , Interferon gama/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Camundongos , Microscopia Confocal , NF-kappa B/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/toxicidade , Quinolinas/síntese química , Quinolinas/química , Quinolinas/toxicidade , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
5.
Nanotechnology ; 27(2): 025704, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26629708

RESUMO

Non-trivial arrangement of molecules within a molecular network complicates structure determination due to interdigitation, partial overlap, or stacking. We demonstrate that combined imaging and lateral manipulation with a scanning tunneling microscope resolves the intricate structure of a molecular network in two-dimensions in a straightforward manner. The network, formed by a monolayer of 5,10,15-tris(pentafluorophenyl)-corrole molecules on Ag(111), is manipulated for the first time with single-molecule precision. Our results reveal a shingle-like packing of partially overlapping corrole molecules. Density functional theory calculations support our findings.

6.
Angew Chem Int Ed Engl ; 55(7): 2350-5, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26773287

RESUMO

Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H(+)/4 e(-) process, while oxygen can be fully reduced to water by a 4 e(-)/4 H(+) process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2(-). We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.

7.
Org Biomol Chem ; 13(36): 9373-80, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26280508

RESUMO

Pyrazino compounds such as quinoxalines are 1,4-diazines with widespread occurrence in nature. Quinolin-8-amines are isomerically related and valuable scaffolds in organic synthesis. Herein, we present intramolecular main group metal Lewis acid catalyzed formal hydroamination as well as hydroarylation methodology using mono-propargylated aromatic ortho-diamines. The annulations can be conducted utilizing equal aerobic conditions with either stannic chloride or indium(iii) chloride and represent primary examples for main group metal catalyzed 6-exo-dig and 6-endo-dig, respectively, cyclizations in such settings. Both types of reactions can also be utilized in a one-pot manner starting from ortho-nitro N-propargyl anilines using stoichiometric amounts SnCl2·2H2O or In powder. Mechanistic considerations are presented regarding the substituent-depending regioselectivity.


Assuntos
Compostos de Anilina/química , Índio/química , Quinolinas/síntese química , Quinoxalinas/síntese química , Compostos de Estanho/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Quinolinas/química , Quinoxalinas/química , Relação Estrutura-Atividade
8.
J Am Chem Soc ; 136(47): 16522-32, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25253644

RESUMO

Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants.

9.
Phys Rev Lett ; 113(13): 133001, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302884

RESUMO

We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Fenômenos Eletromagnéticos , Ondas de Rádio
10.
Bioconjug Chem ; 24(10): 1656-68, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23978112

RESUMO

Label-free biosensors detect binding of prey molecules (″analytes″) to immobile bait molecules on the sensing surface. Numerous methods are available for immobilization of bait molecules. A convenient option is binding of biotinylated bait molecules to streptavidin-functionalized surfaces, or to biotinylated surfaces via biotin-avidin-biotin bridges. The goal of this study was to find a rapid method for reversible immobilization of biotinylated bait molecules on biotinylated sensor chips. The task was to establish a biotin-avidin-biotin bridge which was easily cleaved when desired, yet perfectly stable under a wide range of measurement conditions. The problem was solved with the avidin mutant M96H which contains extra histidine residues at the subunit-subunit interfaces. This mutant was bound to a mixed self-assembled monolayer (SAM) containing biotin residues on 20% of the oligo(ethylene glycol)-terminated SAM components. Various biotinylated bait molecules were bound on top of the immobilized avidin mutant. The biotin-avidin-biotin bridge was stable at pH ≥3, and it was insensitive to sodium dodecyl sulfate (SDS) at neutral pH. Only the combination of citric acid (2.5%, pH 2) and SDS (0.25%) caused instantaneous cleavage of the biotin-avidin-biotin bridge. As a consequence, the biotinylated bait molecules could be immobilized and removed as often as desired, the only limit being the time span for reproducible chip function when kept in buffer (2-3 weeks at 25 °C). As expected, the high isolectric pH (pI) of the avidin mutant caused nonspecific adsorption of proteins. This problem was solved by acetylation of avidin (to pI < 5), or by optimization of SAM formation and passivation with biotin-BSA and BSA.


Assuntos
Avidina/química , Biotina/química , Proteínas Imobilizadas/química , Animais , Avidina/genética , Técnicas Biossensoriais/instrumentação , Biotinilação , Proteínas Imobilizadas/genética , Mutação Puntual , Propriedades de Superfície
11.
Inorg Chem ; 52(20): 11910-22, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24073596

RESUMO

An efficient photocatalytic two-electron reduction and protonation of nicotine amide adenine dinucleotide (NAD(+)), as well as the synthetic nucleotide co-factor analogue N-benzyl-3-carbamoyl-pyridinium (BNAD(+)), powered by photons in the long-wavelength region of visible light (λirr > 610 nm), is demonstrated for the first time. This functional artificial photosynthetic counterpart of the complete energy-trapping and solar-to-fuel conversion primary processes occurring in natural photosystem I (PS I) is achieved with a robust water-soluble tin(IV) complex of meso-tetrakis(N-methylpyridinium)-chlorin acting as the light-harvesting sensitizer (threshold wavelength of λthr = 660 nm). In buffered aqueous solution, this chlorophyll-like compound photocatalytically recycles a rhodium hydride complex of the type [Cp*Rh(bpy)H](+), which is able to mediate regioselective hydride transfer processes. Different one- and two-electron donors are tested for the reductive quenching of the irradiated tin complex to initiate the secondary dark reactions leading to nucleotide co-factor reduction. Very promising conversion efficiencies, quantum yields, and excellent photosensitizer stabilities are observed. As an example of a catalytic dark reaction utilizing the reduction equivalents of accumulated NADH, an enzymatic process for the selective transformation of aldehydes with alcohol dehydrogenase (ADH) coupled to the primary photoreactions of the system is also demonstrated. A tentative reaction mechanism for the transfer of two electrons and one proton from the reductively quenched tin chlorin sensitizer to the rhodium co-catalyst, acting as a reversible hydride carrier, is proposed.


Assuntos
Nucleotídeos/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Estanho/química , Catálise , Estrutura Molecular , Nucleotídeos/síntese química , Compostos Organometálicos/síntese química , Oxirredução , Processos Fotoquímicos , Fármacos Fotossensibilizantes/síntese química
12.
Angew Chem Weinheim Bergstr Ger ; 135(21): e202302208, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38516328

RESUMO

As alternative energy sources are essential to reach a climate-neutral economy, hydrogen peroxide (H2O2) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2O2 ORR electrocatalyst is yet a challenge, making the design of-ideally-bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis-[cobalt(III) corrole] complex CoIITP[CoIIIC]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two-electron transfer generated H2O2, an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm-2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec-1 combined with superior stability.

13.
Adv Mater ; 35(5): e2208061, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36305028

RESUMO

Incorporating large organic cations to form 2D and mixed 2D/3D structures significantly increases the stability of perovskite solar cells. However, due to their low electron mobility, aligning the organic sheets to ensure unimpeded charge transport is critical to rival the high performances of pure 3D systems. While additives such as methylammonium chloride (MACl) can enable this preferential orientation, so far, no complete description exists explaining how they influence the nucleation process to grow highly aligned crystals. Here, by investigating the initial stages of the crystallization, as well as partially and fully formed perovskites grown using MACl, the origins underlying this favorable alignment are inferred. This mechanism is studied by employing 3-fluorobenzylammonium in quasi-2D perovskite solar cells. Upon assisting the crystallization with MACl, films with a degree of preferential orientation of 94%, capable of withstanding moisture levels of 97% relative humidity for 10 h without significant changes in the crystal structure are achieved. Finally, by combining macroscopic, microscopic, and spectroscopic studies, the nucleation process leading to highly oriented perovskite films is elucidated. Understanding this mechanism will aid in the rational design of future additives to achieve more defect tolerant and stable perovskite optoelectronics.

14.
J Am Chem Soc ; 134(1): 91-4, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22188437

RESUMO

Corroles are versatile chemically active agents in solution. Expanding their applications toward surface-supported systems requires a fundamental knowledge of corrole-surface interactions. We employed the tip of a low-temperature scanning tunneling microscope as local probe to investigate at the single-molecule level the electronic and geometric properties of surface-supported free-base corrole molecules. To provide a suitable reference for other corrole-based systems on surfaces, we chose the archetypal 5,10,15-tris(pentafluorophenyl)corrole [H(3)(TpFPC)] as model system, weakly adsorbed on two surfaces with different interaction strengths. We demonstrate the nondissociative adsorption of H(3)(TpFPC) on pristine Au(111) and on an intermediate organic layer that provides sufficient electronic decoupling to investigate geometric and frontier orbital electronic properties of almost undisturbed H(3)(TpFPC) molecules at the submolecular level. We identify a deviating adsorption behavior of H(3)(TpFPC) compared to structurally similar porphyrins, characterized by a chiral pair of molecule-substrate configurations.


Assuntos
Metaloporfirinas/química , Microscopia de Tunelamento , Análise Espectral , Ouro/química , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
15.
Front Chem ; 10: 956502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704620

RESUMO

Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.

16.
Front Chem ; 9: 685619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336786

RESUMO

Since decades, the global community has been facing an environmental crisis, resulting in the need to switch from outdated to new, more efficient energy sources and a more effective way of tackling the rising carbon dioxide emissions. The activation of small molecules such as O2, H+, and CO2 in a cost-and energy-efficient way has become one of the key topics of catalysis research. The main issue concerning the activation of these molecules is the kinetic barrier that has to be overcome in order for the catalyzed reaction to take place. Nature has already provided many pathways in which small molecules are being activated and changed into compounds with higher energy levels. One of the most famous examples would be photosynthesis in which CO2 is transformed into glucose and O2 through sunlight, thus turning solar energy into chemical energy. For these transformations nature mostly uses enzymes that function as catalysts among which porphyrin and porphyrin-like structures can be found. Therefore, the research focus lies on the design of novel porphyrinoid systems (e.g. corroles, porphyrins and phthalocyanines) whose metal complexes can be used for the direct electrocatalytic reduction of CO2 to valuable chemicals like carbon monoxide, formate, methanol, ethanol, methane, ethylene, or acetate. For example the cobalt(III)triphenylphosphine corrole complex has been used as a catalyst for the electroreduction of CO2 to ethanol and methanol. The overall goal and emphasis of this research area is to develop a method for industrial use, raising the question of whether and how to incorporate the catalyst onto supportive materials. Graphene oxide, multi-walled carbon nanotubes, carbon black, and activated carbon, to name a few examples, have become researched options. These materials also have a beneficial effect on the catalysis through for instance preventing rival reactions such as the Hydrogen Evolution Reaction (HER) during CO2 reduction. It is very apparent that the topic of small molecule activation offers many solutions for our current energy as well as environmental crises and is becoming a thoroughly investigated research objective. This review article aims to give an overview over recently gained knowledge and should provide a glimpse into upcoming challenges relating to this subject matter.

17.
J Am Chem Soc ; 131(49): 17740-1, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19995071

RESUMO

Low-temperature scanning tunneling microscopy, a well-established technique for single-molecule investigations in an ultrahigh vacuum environment, has been used to study the electronic properties of Au(III) 5,10,15,20-tetraphenylporphyrin (AuTPP) molecules on Au(111) at the submolecular scale. AuTPP serves as a model system for chemotherapeutically relevant Au(III) porphyrins. For the first time, real-space images and local scanning tunneling spectroscopy data of the frontier molecular orbitals of AuTPP are presented. A comparison with results from density functional theory reveals significant deviations from gas-phase behavior due to a non-negligible molecule/substrate interaction. We identify the oxidation state of the central metal ion in the adsorbed AuTPP as Au(3+).


Assuntos
Ouro/química , Microscopia de Tunelamento/métodos , Compostos Organometálicos/química , Porfirinas/química , Simulação por Computador , Modelos Químicos , Tamanho da Partícula , Propriedades de Superfície , Temperatura
18.
J Am Chem Soc ; 131(15): 5478-82, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19331321

RESUMO

Human rhinovirus serotype 2 (HRV2) specifically binds to very-low-density lipoprotein receptor (VLDLR). Among the eight extracellular repeats of VLDLR, the third module (V3) has the highest affinity for the virus, and 12 copies of the genetically engineered concatamer V33333-His(6) were found to bind per virus particle. In the present study, ring formation of V33333-His(6) about each of the 12 5-fold symmetry axes on HRV2 was demonstrated by fluorescence resonance energy transfer (FRET) between donor and acceptor on N- and C-terminus, respectively. In particular, the N-terminus of V33333-His(6) was labeled with fluorescein, and the C-terminus with a new quencher which was bound to the His(6) tag with nanomolar affinity (K(d) approximately 10(-8) M) in the presence of 2 microM NiCl(2).


Assuntos
Técnicas de Sonda Molecular , Receptores de LDL/metabolismo , Rhinovirus/metabolismo , Sítios de Ligação , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Engenharia Genética , Humanos , Ligação Proteica , Conformação Proteica
19.
Nat Commun ; 10(1): 3864, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455766

RESUMO

Electrochemical conversion of CO2 to alcohols is one of the most challenging methods of conversion and storage of electrical energy in the form of high-energy fuels. The challenge lies in the catalyst design to enable its real-life implementation. Herein, we demonstrate the synthesis and characterization of a cobalt(III) triphenylphosphine corrole complex, which contains three polyethylene glycol residues attached at the meso-phenyl groups. Electron-donation and therefore reduction of the cobalt from cobalt(III) to cobalt(I) is accompanied by removal of the axial ligand, thus resulting in a square-planar cobalt(I) complex. The cobalt(I) as an electron-rich supernucleophilic d8-configurated metal centre, where two electrons occupy and fill up the antibonding dz2 orbital. This orbital possesses high affinity towards electrophiles, allowing for such electronically configurated metals reactions with carbon dioxide. Herein, we report the potential dependent heterogeneous electroreduction of CO2 to ethanol or methanol of an immobilized cobalt A3-corrole catalyst system. In moderately acidic aqueous medium (pH = 6.0), the cobalt corrole modified carbon paper electrode exhibits a Faradaic Efficiency (FE%) of 48 % towards ethanol production.

20.
Monatsh Chem ; 149(4): 773-781, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681657

RESUMO

ABSTRACT: We report the chemical synthesis and characterization of the stable 5,15-bis(pentafluorophenyl)-10-(trimethylsilylethynyl)corrole which serves as a precursor for the subsequent in situ sila-Sonogashira-cross-coupling reaction and metalation with copper(II) acetate. Under ambient conditions and a common catalyst system the reaction with 1-iodopyrene occurred within five hours. Due to the direct conjugation of the 18π-electronic system of the corrole macrocycle over the alkynyl group to the pyrene moiety the optical transitions in the Soret (B-) band Q-band region are significantly altered. The copper corrole exhibited complex hyperfine and superhyperfine structure in the EPR spectrum. The assignment of the EPR spectrum reveals the existence of an axial [CuII-cor∙+] species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa