Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240385

RESUMO

There is a medical need to develop new and effective therapies against triple-negative breast cancer (TNBC). Chimeric antigen receptor (CAR) natural killer (NK) cells are a promising alternative to CAR-T cell therapy for cancer. A search for a suitable target in TNBC identified CD44v6, an adhesion molecule expressed in lymphomas, leukemias and solid tumors that is implicated in tumorigenesis and metastases. We have developed a next-generation CAR targeting CD44v6 that incorporates IL-15 superagonist and checkpoint inhibitor molecules. We could show that CD44v6 CAR-NK cells demonstrated effective cytotoxicity against TNBC in 3D spheroid models. The IL-15 superagonist was specifically released upon recognition of CD44v6 on TNBC and contributed to the cytotoxic attack. PD1 ligands are upregulated in TNBC and contribute to the immunosuppressive tumor microenvironment (TME). Competitive inhibition of PD1 neutralized inhibition by PD1 ligands expressed on TNBC. In total, CD44v6 CAR-NK cells are resistant to TME immunosuppression and offer a new therapeutic option for the treatment of BC, including TNBC.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Interleucina-15/metabolismo , Ligantes , Linhagem Celular Tumoral , Células Matadoras Naturais , Imunoterapia Adotiva , Microambiente Tumoral
2.
PLoS Pathog ; 15(3): e1007601, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883607

RESUMO

Influenza viruses (IVs) tend to rapidly develop resistance to virus-directed vaccines and common antivirals targeting pathogen determinants, but novel host-directed approaches might preclude resistance development. To identify the most promising cellular targets for a host-directed approach against influenza, we performed a comparative small interfering RNA (siRNA) loss-of-function screen of IV replication in A549 cells. Analysis of four different IV strains including a highly pathogenic avian H5N1 strain, an influenza B virus (IBV) and two human influenza A viruses (IAVs) revealed 133 genes required by all four IV strains. According to gene enrichment analyses, these strain-independent host genes were particularly enriched for nucleocytoplasmic trafficking. In addition, 360 strain-specific genes were identified with distinct patterns of usage for IAVs versus IBV and human versus avian IVs. The strain-independent host genes served to define 43 experimental and otherwise clinically approved drugs, targeting reportedly fourteen of the encoded host factors. Amongst the approved drugs, the urea-based kinase inhibitors (UBKIs) regorafenib and sorafenib exhibited a superior therapeutic window of high IV antiviral activity and low cytotoxicity. Both UBKIs appeared to block a cell signaling pathway involved in IV replication after internalization, yet prior to vRNP uncoating. Interestingly, both compounds were active also against unrelated viruses including cowpox virus (CPXV), hantavirus (HTV), herpes simplex virus 1 (HSV1) and vesicular stomatitis virus (VSV) and showed antiviral efficacy in human primary respiratory cells. An in vitro resistance development analysis for regorafenib failed to detect IV resistance development against this drug. Taken together, the otherwise clinically approved UBKIs regorafenib and sorafenib possess high and broad-spectrum antiviral activity along with substantial robustness against resistance development and thus constitute attractive host-directed drug candidates against a range of viral infections including influenza.


Assuntos
Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Replicação Viral/fisiologia , Células A549 , Transporte Ativo do Núcleo Celular/fisiologia , Antivirais , Interações Hospedeiro-Patógeno , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Influenza Humana , Orthomyxoviridae/patogenicidade , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Piridinas/farmacologia , Interferência de RNA/imunologia , Vírus de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Sorafenibe/farmacologia , Ureia/metabolismo
3.
Virus Genes ; 53(6): 762-773, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28451945

RESUMO

Herpesviruses have acquired numerous genes from their hosts. Although these homologs are not essential for viral replication, they often have important immunomodulatory functions that ensure viral persistence in the host. Some of these viral molecules are called virokines as they mimic cellular cytokines of their host such as interleukin-10 (cIL-10). In recent years, many viral homologs of IL-10 (vIL-10s) have been discovered in the genome of members of the order Herpesvirales. For some, gene and protein structure as well as biological activity and potential use in the clinical context have been explored. Besides virokines, herpesviruses have also captured genes encoding membrane-bound host immunomodulatory proteins such as major histocompatibility complex (MHC) molecules. These viral MHC mimics also retain many of the functions of the cellular genes, in particular directly or indirectly modulating the activity of natural killer cells. The mechanisms underlying capture of cellular genes by large DNA viruses are still enigmatic. In this review, we provide an update of the advances in the field of herpesviral gene piracy and discuss possible scenarios that could explain how the gene transfer from host to viral genome was achieved.


Assuntos
Herpesviridae/genética , Interações Hospedeiro-Patógeno/genética , Fatores Imunológicos/genética , Imunomodulação/genética , Animais , Citocinas/genética , Humanos , Proteínas Virais/genética
4.
Proc Natl Acad Sci U S A ; 111(25): 9229-34, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927527

RESUMO

In the bone marrow, a population of memory T cells has been described that promotes efficient secondary immune responses and has been considered to be preactivated, owing to its expression of CD69 and CD25. Here we show that human bone marrow professional memory T cells are not activated but are resting in terms of proliferation, transcription, and mobility. They are in the G0 phase of the cell cycle, and their transcriptome is that of resting T cells. The repertoire of CD4(+) bone marrow memory T cells compared with CD4(+) memory T cells from the blood is significantly enriched for T cells specific for cytomegalovirus-pp65 (immunodominant protein), tetanus toxoid, measles, mumps, and rubella. It is not enriched for vaccinia virus and Candida albicans-MP65 (immunodominant protein), typical pathogens of skin and/or mucosa. CD4(+) memory T cells specific for measles are maintained nearly exclusively in the bone marrow. Thus, CD4(+) memory T cells from the bone marrow provide long-term memory for systemic pathogens.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/fisiologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Lectinas Tipo C/imunologia , Fase de Repouso do Ciclo Celular/imunologia , Adulto , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
J Immunol ; 192(9): 4294-302, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683192

RESUMO

Invariant NKT cells (iNKT cells) are innate lymphocytes that recognize lipid-derived Ags presented by the MHC class I-related protein CD1d. In this study, we analyzed the role of iNKT cells in the generation of Abs against HSV type 1 (HSV-1). In sera from healthy hman donors, we found a correlation between HSV-1-specific IgG titers and proportions of CD4(+) iNKT cells. In HSV-1-infected iNKT cell-deficient mice, the amount of specific IgM and IgG Abs were significantly reduced compared with wild-type mice. Moreover, iNKT cell-deficient mice were unable to upregulate CD1d on B cells and failed to establish an IFN-γ-driven subtype profile of HSV-1-specific IgG Abs. In spleens of HSV-1-infected wild-type mice, the percentage of iNKT cells expressing CCR6, a marker for inflammatory iNKT cells secreting IFN-γ, was significantly decreased at 6 mo postinfection, suggesting that these cells were released from the spleen to other tissues. Finally, in vitro experiments showed that in the absence of CD1d-restricted cells, HSV-1 induced markedly lower IFN-γ production in splenocytes from naive mice. Taken together, our results indicate that iNKT cells shape the Ab response to HSV-1 infection and provide a basis for rational development of antiviral vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Herpes Simples/imunologia , Células T Matadoras Naturais/imunologia , Animais , Anticorpos Antivirais/sangue , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Gen Virol ; 96(Pt 6): 1258-1263, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25678530

RESUMO

Hantaviruses are emerging zoonotic pathogens that can cause severe disease in humans. Clinical observations suggest that human immune components contribute to hantavirus-induced pathology. To address this issue we generated mice with a humanized immune system. Hantavirus infection of these animals resulted in systemic infection associated with weight loss, decreased activity, ruffled fur and inflammatory infiltrates of lung tissue. Intriguingly, after infection, humanized mice harbouring human leukocyte antigen (HLA) class I-restricted human CD8+ T cells started to lose weight earlier (day 10) than HLA class I-negative humanized mice (day 15). Moreover, in these mice the number of human platelets dropped by 77 % whereas the number of murine platelets did not change, illustrating how differences between rodent and human haemato-lymphoid systems may contribute to disease development. To our knowledge this is the first description of a humanized mouse model of hantavirus infection, and our results indicate a role for human immune cells in hantaviral pathogenesis.


Assuntos
Modelos Animais de Doenças , Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Interações Hospedeiro-Patógeno , Orthohantavírus/fisiologia , Animais , Peso Corporal , Orthohantavírus/crescimento & desenvolvimento , Orthohantavírus/patogenicidade , Humanos , Camundongos SCID , Contagem de Plaquetas
7.
Eur J Immunol ; 43(10): 2566-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23824566

RESUMO

Hantaviruses are emerging human pathogens. They induce an unusually strong antiviral response of human HLA class I (HLA-I) restricted CD8⁺ T cells that may contribute to tissue damage and hantavirus-associated disease. In this study, we analyzed possible hantaviral mechanisms that enhance the HLA-I antigen presentation machinery. Upon hantavirus infection of various human and primate cell lines, we observed transactivation of promoters controlling classical HLA molecules. Hantavirus-induced HLA-I upregulation required proteasomal activity and was associated with increased TAP expression. Intriguingly, human DCs acquired the capacity to cross-present antigen upon hantavirus infection. Furthermore, knockdown of TIR domain containing adaptor inducing IFN-ß or retinoic acid inducible gene I abolished hantavirus-driven HLA-I induction. In contrast, MyD88-dependent viral sensors were not involved in HLA-I induction. Our results show that hantaviruses strongly boost the HLA-I antigen presentation machinery by mechanisms that are dependent on both retinoic acid inducible gene I and TIR domain containing adaptor inducing IFN-ß.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apresentação de Antígeno , Células Dendríticas/imunologia , Infecções por Hantavirus/imunologia , Orthohantavírus/imunologia , Receptores do Ácido Retinoico/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Chlorocebus aethiops , Apresentação Cruzada/genética , Células Dendríticas/virologia , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/genética , Regulação para Cima , Células Vero
8.
Front Immunol ; 14: 1166765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520530

RESUMO

Introduction: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods: We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results: Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion: PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.


Assuntos
COVID-19 , Vacinas Virais , Cricetinae , Humanos , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Epitopos de Linfócito T , Administração Intranasal , Anticorpos Neutralizantes , Antígenos HLA-A
9.
Cell Host Microbe ; 31(11): 1866-1881.e10, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37944493

RESUMO

The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.


Assuntos
COVID-19 , Microbiota , Humanos , Animais , Camundongos , Glicoproteína da Espícula de Coronavírus , Formação de Anticorpos , Mimetismo Molecular , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Antivirais , Imunoglobulina A Secretora , Imunoglobulina G , Anticorpos Neutralizantes
10.
J Immunol ; 185(1): 488-97, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20525895

RESUMO

Virulent varicella-zoster virus (VZV) can spread in immunocompetent humans, resulting in symptoms mostly of the skin. In contrast, vaccine Oka (V-Oka), the attenuated VZV vaccine strain, only rarely causes clinical reactions. The mechanisms underlying these pathogenetic differences are unclear. In this study, we comparatively analyzed the ability of virulent VZV and V-Oka to modulate instruction of dendritic cells (DCs) by innate signals. DCs isolated from normal human skin were susceptible to infection with VZV and V-Oka. Moreover, inflammatory DCs, which play a crucial role in the stimulation of Th1 immune responses, accumulated in herpes zoster lesions. Infection of inflammatory DCs generated in vitro with virulent VZV or V-Oka resulted in upregulation of CD1c. Upon coculture with CD1c-restricted innate cells, DCs developed a mature phenotype whether infected with virulent VZV or V-Oka. Intriguingly, a striking difference was detected on the functional level. The release of IFN-gamma and IL-12, the signature cytokines of Th1 responses, was enhanced by V-Oka but blocked by virulent VZV. V-Oka and virulent VZV efficiently synergized with CD40L, eliminating the possibility that CD40 signaling was a target of VZV-associated immune evasion. Instead, virulent VZV selectively interfered with signaling through TLR2, which is known to sense VZV. Thus, virulent VZV subverts Th1-promoting instruction of human DCs by blocking TLR2-mediated innate signals that prime IL-12 production by DCs. Taken together, our results demonstrate a novel immune-evasion mechanism of virulent VZV that has been lost during the attenuation process leading to the VZV vaccine strain.


Assuntos
Vacina contra Varicela/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/patogenicidade , Vacinas contra Herpesvirus/imunologia , Transdução de Sinais/imunologia , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/citologia , Herpes Zoster/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 3/isolamento & purificação , Humanos , Evasão da Resposta Imune/imunologia , Interleucina-12/biossíntese , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/imunologia , Monócitos/virologia , Células Th1/imunologia , Células Th1/virologia , Vacinas Atenuadas/imunologia , Virulência
11.
Immunol Rev ; 225: 163-89, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18837782

RESUMO

SUMMARY: Hantaviruses are predominantly rodent-borne pathogens, although recently novel shrew-associated hantaviruses were found. Within natural reservoir hosts, hantairuses do not cause obvious pathogenetic effects; transmission to humans, however, can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome, depending on the virus species involved. This review is focussed on the recent knowledge on hantavirus-induced immune responses in rodent reservoirs and humans and their impact on susceptibility, transmission, and outcome of hantavirus infections. In addition, this review incorporates a discussion on the potential role of direct cell-virus interactions in the pathogenesis of hantavirus infections in humans. Finally, questions for further research efforts on the immune responses in potential hantavirus reservoir hosts and humans are summarized.


Assuntos
Células Dendríticas/imunologia , Reservatórios de Doenças/virologia , Infecções por Hantavirus/imunologia , Orthohantavírus/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Apoptose/imunologia , Células Dendríticas/metabolismo , Orthohantavírus/genética , Orthohantavírus/imunologia , Infecções por Hantavirus/patologia , Infecções por Hantavirus/transmissão , Infecções por Hantavirus/virologia , Humanos , Imunidade Ativa , Imunidade Inata , Integrinas/imunologia , Integrinas/metabolismo , Roedores/imunologia , Roedores/virologia , Subpopulações de Linfócitos T/metabolismo , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Front Immunol ; 13: 1028972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275700

RESUMO

Multiple Sclerosis (MS) is an autoimmune disease that is characterized by inflammation and demyelination of nerve cells. There is strong evidence that Epstein-Barr virus (EBV), a human herpesvirus infecting B cells, greatly increases the risk of subsequent MS. Intriguingly, EBV not only induces human interleukin-10 but also encodes a homologue of this molecule, which is a key anti-inflammatory cytokine of the immune system. Although EBV-encoded IL-10 (ebvIL-10) has a high amino acid identity with its cellular counterpart (cIL-10), it shows more restricted and partially weaker functionality. We propose that both EBV-induced cIL-10 and ebvIL-10 act in a temporally and functionally coordinated manner helping the pathogen to establish latency in B cells and, at the same time, to balance the function of antiviral T cells. As a result, the EBV load persisting in the immune system is kept at a constant but individually different level (set point). During this immunological tug of war between virus and host, however, MS can be induced as collateral damage if the set point is too high. Here, we discuss a possible role of ebvIL-10 and EBV-induced cIL-10 in EBV-driven pathogenesis of MS.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Aminoácidos/metabolismo , Antivirais/metabolismo , Herpesvirus Humano 4 , Interleucina-10/metabolismo , Esclerose Múltipla/etiologia
13.
J Gen Virol ; 92(Pt 9): 2191-2200, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21632559

RESUMO

Hantaan virus (HTNV) causes severe human disease. The HTNV genome consists of three ssRNA segments of negative polarity that are complexed with viral nucleocapsid (N) protein. How the human innate immune system detects HTNV is unclear. RNA helicase retinoic acid-inducible gene I (RIG-I) does not sense genomic HTNV RNA. So far it has not been analysed whether pathogen-associated molecular patterns generated during the HTNV replication trigger RIG-I-mediated innate responses. Indeed, we found that knock-down of RIG-I in A549 cells, an alveolar epithelial cell line, increases HTNV replication and prevents induction of 2',5'-oligoadenylate synthetase, an interferon-stimulated gene. Moreover, overexpression of wild-type or constitutive active RIG-I in Huh7.5 cells lacking a functional RIG-I diminished HTNV virion production. Intriguingly, reporter assays revealed that in vitro-transcribed HTNV N RNA and expression of the HTNV N ORF triggers RIG-I signalling. This effect was completely blocked by the RNA-binding domain of vaccinia virus E3 protein, suggesting that dsRNA-like secondary structures of HTNV N RNA stimulate RIG-I. Finally, transfection of HTNV N RNA into A549 cells resulted in a 2 log-reduction of viral titres upon challenge with virus. Our study is the first demonstration that RIG-I mediates antiviral innate responses induced by HTNV N RNA during HTNV replication and interferes with HTNV growth.


Assuntos
RNA Helicases DEAD-box/metabolismo , Vírus Hantaan/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , Técnicas de Silenciamento de Genes , Vírus Hantaan/imunologia , Humanos , Receptores Imunológicos
14.
J Virol ; 84(2): 1034-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906927

RESUMO

Herpes simplex virus type 1 (HSV-1) is one of the most frequent and successful human pathogens. It targets immature dendritic cells (iDCs) to interfere with the antiviral immune response. The mechanisms underlying apoptosis of HSV-1-infected iDCs are not fully understood. Previously, we have shown that HSV-1-induced apoptosis of iDCs is associated with downregulation of the cellular FLICE-inhibitory protein (c-FLIP), a potent inhibitor of caspase-8-mediated apoptosis. In this study, we prove that HSV-1 induces degradation of c-FLIP in a proteasome-independent manner. In addition, by using c-FLIP-specific small interfering RNA (siRNA) we show for the first time that downregulation of c-FLIP expression is sufficient to drive uninfected iDCs into apoptosis, underlining the importance of this molecule for iDC survival. Surprisingly, we also observed virus-induced c-FLIP downregulation in epithelial cells and many other cell types that do not undergo apoptosis after HSV-1 infection. Microarray analyses revealed that HSV-1-encoded latency-associated transcript (LAT) sequences, which can substitute for c-FLIP as an inhibitor of caspase-8-mediated apoptosis, are much less abundant in iDCs as compared to epithelial cells. Finally, iDCs infected with an HSV-1 LAT knockout mutant showed increased apoptosis when compared to iDCs infected with the corresponding wild-type HSV-1. Taken together, our results demonstrate that apoptosis of HSV-1-infected iDCs requires both c-FLIP downregulation and diminished expression of viral LAT.


Assuntos
Apoptose/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Células Dendríticas , Regulação para Baixo , Herpesvirus Humano 1/patogenicidade , MicroRNAs/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Linhagem Celular , Células Dendríticas/citologia , Células Dendríticas/fisiologia , Células Dendríticas/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Latência Viral
15.
Hum Vaccin ; 7(6): 685-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21508676

RESUMO

Hantaviruses are emerging viruses which are hosted by small mammals. When transmitted to humans, they can cause two clinical syndromes, hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. The review compiles the current list of hantaviruses which are thought to be pathogenic in humans on the basis of molecular or at least serological evidence. Whereas induction of a neutralizing humoral immune response is considered to be protective against infection, the dual role of cellular immunity (protection versus immunopathogenicity) is discussed. For active immunisation, inactivated virus vaccines are licensed in certain Asian countries. Moreover, several classical and molecular vaccine approaches are in pre-clinical stages of development. The development of hantavirus vaccines is hampered by the lack of adequate animal models of hantavirus-associated disease. In addition to active immunization strategies, the review summarizes other ways of infection prevention, as passive immunization, chemoprophylaxis, and exposition prophylaxis.


Assuntos
Infecções por Hantavirus/prevenção & controle , Orthohantavírus/imunologia , Vacinas Virais/imunologia , Imunidade Adaptativa , Infecções por Hantavirus/etiologia , Infecções por Hantavirus/imunologia , Humanos , Vacinação , Vacinas Sintéticas/imunologia
16.
Nat Commun ; 12(1): 1961, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785765

RESUMO

The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-ß, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-ß. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-ß, and is distracted from itself.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Fator de Crescimento Transformador beta/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Feminino , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Virus Genes ; 41(3): 319-28, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20734125

RESUMO

The tri-segmented RNA genome of hantaviruses facilitates genetic reassortment by segment swapping when cells are co-infected with different virus strains. We found efficient in vitro reassortment between members of two different genetic lineages of the Dobrava-Belgrade virus species, the weakly virulent DOBV-Aa and highly virulent DOBV-Af. In all reassortants, S and L segments originated from the same parental strain, and only the M segment was exchanged. To identify functional differences between the parental strains DOBV-Aa and DOBV-Af in cell culture and to compare them with the reassortants, we studied elements of the innate immunity in virus-infected cells. The contrasting phenotypes of the parental viruses were maintained by the reassortants carrying the respective S and L segments of the parental virus and were not influenced by the origin of the M segment.


Assuntos
Infecções por Hantavirus/virologia , Orthohantavírus/genética , Vírus Reordenados/genética , Recombinação Genética , Animais , Linhagem Celular , Chlorocebus aethiops , Orthohantavírus/classificação , Orthohantavírus/imunologia , Orthohantavírus/patogenicidade , Infecções por Hantavirus/imunologia , Humanos , Dados de Sequência Molecular , Vírus Reordenados/classificação , Vírus Reordenados/imunologia , Vírus Reordenados/patogenicidade , Células Vero , Proteínas Virais/genética , Virulência
18.
Adv Biol Regul ; 77: 100741, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32773102

RESUMO

Pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses an unprecedented challenge to healthcare systems due to the lack of a vaccine and specific treatment options. Accordingly, there is an urgent need to understand precisely the pathogenic mechanisms underlying this multifaceted disease. There is increasing evidence that the immune system reacts insufficiently to SARS-CoV-2 and thus contributes to organ damage and to lethality. In this review, we suggest that the overwhelming production of reactive oxygen species (ROS) resulting in oxidative stress is a major cause of local or systemic tissue damage that leads to severe COVID-19. It increases the formation of neutrophil extracellular traps (NETs) and suppresses the adaptive arm of the immune system, i.e. T cells that are necessary to kill virus-infected cells. This creates a vicious cycle that prevents a specific immune response against SARS-CoV-2. The key role of oxidative stress in the pathogenesis of severe COVID-19 implies that therapeutic counterbalancing of ROS by antioxidants such as vitamin C or NAC and/or by antagonizing ROS production by cells of the mononuclear phagocyte system (MPS) and neutrophil granulocytes and/or by blocking of TNF-α can prevent COVID-19 from becoming severe. Controlled clinical trials and preclinical models of COVID-19 are needed to evaluate this hypothesis.


Assuntos
Antioxidantes/uso terapêutico , Infecções por Coronavirus/epidemiologia , Armadilhas Extracelulares/imunologia , Linfopenia/epidemiologia , Neutrófilos/imunologia , Pandemias , Pneumonia Viral/epidemiologia , Acetilcisteína/uso terapêutico , Ácido Ascórbico/uso terapêutico , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/genética , Citocinas/imunologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Linfopenia/tratamento farmacológico , Linfopenia/imunologia , Linfopenia/virologia , NF-kappa B/genética , NF-kappa B/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/virologia , Estresse Oxidativo/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2 , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-32596167

RESUMO

Members of different virus families including Hantaviridae cause viral hemorrhagic fevers (VHFs). The decisive determinants of hantavirus-associated pathogenicity are still enigmatic. Pathogenic hantavirus species, such as Puumala virus (PUUV), Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), and Sin Nombre virus (SNV), are associated with significant case fatality rates. In contrast, Tula virus (TULV) only sporadically causes mild disease in immunocompetent humans and Prospect Hill virus (PHV) so far has not been associated with any symptoms. They are thus defined here as low pathogenic/apathogenic hantavirus species. We found that productive infection of cells of the mononuclear phagocyte system (MPS), such as monocytes and dendritic cells (DCs), correlated well with the pathogenicity of hantavirus species tested. HTNV (intermediate case fatality rates) replicated more efficiently than PUUV (low case fatality rates) in myeloid cells, whereas low pathogenic/apathogenic hantavirus species did not produce any detectable virus titers. Analysis of PHPUV, a reassortant hantavirus derived from a pathogenic (PUUV) and an apathogenic (PHV) hantavirus species, indicated that the viral glycoproteins are not decisive for replication in MPS cells. Moreover, blocking acidification of endosomes with chloroquine decreased the number of TULV genomes in myeloid cells suggesting a post-entry block for low pathogenic/apathogenic hantavirus species in myeloid cells. Intriguingly, pathogenic but not low pathogenic/apathogenic hantavirus species induced conversion of monocytes into inflammatory DCs. The proinflammatory programming of MPS cells by pathogenic hantavirus species required integrin signaling and viral replication. Our findings indicate that the capacity to replicate in MPS cells is a prominent feature of hantaviral pathogenicity.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Animais , Chlorocebus aethiops , Humanos , Sistema Fagocitário Mononuclear , Células Vero , Virulência
20.
J Virol ; 82(9): 4308-19, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18287231

RESUMO

The betaherpesvirus human cytomegalovirus (HCMV) encodes several molecules that block antigen presentation by the major histocompatibility complex (MHC) proteins. Humans also possess one other family of antigen-presenting molecules, the CD1 family; however, the effect of HCMV on CD1 expression is unknown. The majority of CD1 molecules are classified on the basis of homology as group 1 CD1 and are present almost exclusively on professional antigen-presenting cells such as dendritic cells, which are a major target for HCMV infection and latency. We have determined that HCMV encodes multiple blocking strategies targeting group 1 CD1 molecules. CD1 transcription is strongly inhibited by the HCMV interleukin-10 homologue cmvIL-10. HCMV also blocks CD1 antigen presentation posttranscriptionally by the inhibition of CD1 localization to the cell surface. This function is not performed by a known HCMV MHC class I-blocking molecule and is substantially stronger than the blockage induced by herpes simplex virus type 1. Antigen presentation by CD1 is important for the development of the antiviral immune response and the generation of mature antigen-presenting cells. HCMV present in antigen-presenting cells thus blunts the immune response by the blockage of CD1 molecules.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD1/imunologia , Citomegalovirus/imunologia , Antígenos CD1/genética , Antígenos CD1/metabolismo , Linhagem Celular , Células Cultivadas , Citomegalovirus/fisiologia , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade , Transporte Proteico , Transcrição Gênica/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa