Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Chem Chem Phys ; 26(21): 15255-15267, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38751356

RESUMO

Photoinduced linkage isomers (PLI) of the NO ligand in transition-metal nitrosyl compounds can be identified by vibrational spectroscopy due to the large shifts of the (NO) stretching vibration. We present a detailed experimental and theoretical study of the prototypical compound K2[RuCl5NO], where (NO) shifts by ≈150 cm-1 when going from the N-bound (κN) ground state (GS) to the oxygen-bound (κO) metastable linkage isomer MS1, and by ≈360 cm-1 when going to the side-on (κ2N,O) metastable linkage isomer MS2. We show that the experimentally observed N-O stretching modes of the GS, MS1, and MS2 exhibit strong coupling with the Ru-N and Ru-O stretching modes, which can be decoupled using the local mode vibrational theory formalism. From the resulting decoupled pure two-atomic harmonic oscillators the local force constants are determined, which all follow the same quadratic behavior on the wavenumber. A Bader charge analysis shows that the total charge on the NO ligand is not correlated to the observed frequency shift of (NO).

2.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
3.
Chemistry ; 29(72): e202302629, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37723126

RESUMO

An efficient nitrite nickel(II) photoswitch, with the 1-phenyl-2-hydroxyimino-3-[(2'-dimethylamino)ethyl]imino-1-propanone moiety used as the ancillary ligand, is reported. In the ground-state ('dark') crystal structure, the studied compound exists predominantly as the nitro-(η1 -N(O)2 ) isomer, however, traces of the exo- and endo-nitrito-(η1 -ONO) forms are detected both at 100 K (4-5 % each) and under ambient conditions (~9 % each). When excited with the 405-530 nm LED light, the nitro-to-nitrito isomerization takes place. The total conversion exceeds 90 %. The exo-nitrito linkage isomer constitutes the dominant photo-generated form, whereas the relative population of both nitrito species depends on temperature. The reaction is fully reversible and reproducible. The photo-products are stable up to 200 K. The system constitutes a good model case for the reaction mechanism studies. Thus, experimental and theoretical investigations on the photo-isomerism were conducted and are presented in detail. Eventually, the nitro→exo-nitrito→endo-nitrito reaction pathway is proposed.

4.
Inorg Chem ; 62(14): 5531-5542, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36989116

RESUMO

Photoinduced linkage isomers (PLIs) of the nitro-ligand were generated and comprehensively characterized in a square planar unit [Pd(NH3)3NO2]+ of the complex salts [Pd(NH3)4][Pd(NH3)3NO2][MOx3]·yH2O (M = Cr (Cr), Rh (Rh), Co (Co), Ox = oxalate). Structural (XRD) and spectroscopic (IR, UV-vis) investigations at 10 and 150 K allowed determining the structures of several photoinduced linkage isomers, endo-ONO (PLI1, 2) and exo-ONO (PLI3, 4) isomers generated by irradiation with 365 nm from the initial NO2 (GS), along with the assignment of the infrared (IR) bands to each structural isomer. Based on a combination of these methods, the photo- and thermally induced interplay of PLIs was investigated. Irradiation in the temperature range of 10-80 K induces the formation of both endo- and exo-ONO isomers, while increasing the temperature up to 150 K results in the formation of only endo-ONO isomers. The structural arrangement of the endo-ONO and exo-ONO PLI is strongly influenced by intermolecular interactions due to the partial occupation of a neighboring site by water molecules. The investigation of thermal dynamics of PLIs revealed that the thermal decay of the exo-ONO isomer occurs via two steps exo-ONO → endo-ONO → NO2. The kinetic parameters (Ea, k0) of both decay processes were determined together with the characteristic decay temperatures (Td) by IR spectroscopy. According to the photoinduced dynamics measured by IR spectroscopy, the mechanism of PLI formation in [Pd(NH3)3NO2]+ could be described as NO2 → endo-ONO → exo-ONO.

5.
Anal Chem ; 94(10): 4474-4483, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35229596

RESUMO

A light-induced linkage NO isomer (MS1) in trans-[Ru(15NO)(py)419F](ClO4)2 is detected and measured for the first time by solid-state MAS NMR. Chemical shift tensors of 15N and 19F, along with nJ(15N-19F) spin-spin couplings and T1 relaxation times of MS1, are compared with the ground state (GS) at temperatures T < 250 K. Isotropic chemical shifts (15N and 19F) are well resolved for two crystallographically independent cations (A and B) [Ru(15NO)(py)419F]2+, allowing to define separately both populations of MS1 isomers and thermal decay rates for two structural sites. The relaxation times T1 of 19F in the case of GS (30/38.6 s for sites A/B) and MS1 (11.6/11.8 s for sites A/B) indicate that both isomers are diamagnetic, which is the first experimental evidence of diamagnetic properties of MS1 in ruthenium nitrosyl. After light irradiation (λ = 420 nm), the NO ligand rotates by nearly 180° from F-Ru-N-O to F-Ru-O-N, whereby the isotropic chemical shifts of δiso(15N) increase and those of δiso(19F) decrease. The nJ(15N-19F) couplings increase from 2J(15N-Ru-19F)GS = 71 Hz to 3J(15N-O-Ru-19F)MS1 = 105 Hz. These results are interpreted on the basis of DFT-CASTEP calculations including Bader-, Mulliken-, and Hirshfeld-charge density distributions of both states.


Assuntos
Rutênio , Eletrônica , Isomerismo , Ligantes , Óxido Nítrico/química , Rutênio/química
6.
Inorg Chem ; 61(17): 6624-6640, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35430817

RESUMO

Two photoswitchable nickel(II) nitro coordination compounds and their copper(II) analogues are reported. In all these systems, the metal center is chelated by (N,N,O)-donor ligands containing either 2-picolylamine or 8-aminoquinoline fragments. The studied compounds were thoroughly investigated using crystallographic and spectroscopic techniques supplemented by computational analysis. They are easy to synthesize and stable, and all compounds undergo the nitro group isomerization reaction. Nevertheless, there are significant differences between the copper and nickel systems regarding their structural and switchable properties. According to the solid-state IR spectroscopy results, 400-660 nm light irradiation of the ground-state (η2-O,O')-κ-nitrito copper(II) complexes at 10 K induces a rather moderate conversion to a metastable linkage isomer, which is visible only up to approximately 60-80 K. In turn, upon visible light irradiation (ca. 530 nm excitation wavelength), the ground-state nitro isomers of the examined nickel(II) complexes transform into the endo-nitrito forms. It was possible to achieve about 35% conversion for both nickel(II) systems and to determine the resulting crystal structures at 160 K in the case of single crystals after 30-45 min of exposure to LED light (crystals decayed with longer irradiation), and roughly 95% conversion was achieved for thin-film samples as indicated by the IR spectroscopy results. Traces of the endo-nitrito linkage isomers remained up to 200-220 K, and the isomerization reaction was proven to be fully reversible.

7.
Inorg Chem ; 61(2): 950-967, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962391

RESUMO

The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear µ3-oxido clusters [Fe2RuCl4(µ3-O)(µ-OMe)(µ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear µ4-oxido complex [Ga3RuCl3(µ4-O)(µ-OMe)3(µ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(µ-OH)(µ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4-8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6-8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis.

8.
Angew Chem Int Ed Engl ; 61(42): e202210671, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35983847

RESUMO

The {Ru(NO)2 }10 dinitrosylruthenium complex [Ru(NO)2 (PPh3 )2 ] (1) shows photo-induced linkage isomerism (PLI) of a special kind: the two NO ligands switch, on photo-excitation, synchronously from the ground state (GS) with two almost linear RuNO functions to a metastable state (MS) which persists up to 230 K and can be populated to ≈50 %. The MS was experimentally characterised by photo-crystallography, IR spectroscopy and DS-calorimetry as a double-bent variant of the double-linear GS. The experimental results are confirmed by computation which unravels the GS/MS transition as a disrotatory synchronous 50° turn of the two nitrosyl ligands. Although 1 shows the usual redshift of the N-O stretch on bending the MNO unit, there is no increased charge transfer from Ru to NO along the GS-to-MS path. In terms of the effective-oxidation-state (EOS) method, both isomers of 1 and the transition state are Ru-II (NO+ )2 species.


Assuntos
Rutênio , Cristalografia por Raios X , Isomerismo , Ligantes , Óxido Nítrico/química , Rutênio/química
9.
Chemphyschem ; 22(23): 2464-2477, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34708493

RESUMO

Silica matrices hosting transition metal guest complexes may offer remarkable platforms for the development of advanced functional devices. We report here the elaboration of ordered and vertically oriented mesoporous silica thin films containing covalently attached tris(bipyridine)iron derivatives using a combination of electrochemically assisted self-assembly (EASA) method and Huisgen cycloaddition reaction. Such a versatile approach is primarily used to bind nitrogen-based chelating ligands such as (4-[(2-propyn-1-yloxy)]4'-methyl-2,2'-bypiridine, bpy') inside the nanochannels. Further derivatization of the bpy'-functionalized silica thin films is then achieved via a subsequent in-situ complexation step to generate [Fe(bpy)2 (bpy')]2+ inside the mesopore channels. After giving spectroscopic evidences for the presence of such complexes in the functionalized film, electrochemistry is used to transform the confined diamagnetic (S=0) FeLSbpy2bpy'2+ species to paramagnetic (S=1/2) oxidized FeLSbpy2bpy'3+ species in a reversible way, while blue light irradiation (λ=470 nm) enables populating the short-lived paramagnetic (S=2) FeHSbpy2bpy'2+ excited state. [Fe(bpy)2 (bpy')]2+ -functionalized ordered films are therefore both electro- and photo-active through the manipulation of the oxidation state and spin state of the confined complexes, paving the way for their integration in optoelectronic devices.

10.
Photochem Photobiol Sci ; 19(10): 1433-1441, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32991663

RESUMO

The embedment of photochromic dyes into porous host matrices has attracted increasing interest in recent years. Especially the class of spiropyrans has been considered because of its outstanding photochromic and solvatochromic response. We herein present a comprehensive infrared spectroscopic characterization of the photoresponse and photostability of a nitro-substituted spiropyran "SP-Nitro" (namely 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran) non-covalently attached to different crystalline nanoporous MOF (metal-organic framework) host lattices. The TTC mesomeric form of SP-Nitro has been found to be preferably generated upon UV light exposure inside the different MOF hosts. Additionally, the excited isomer was found to be stable for prolonged irradiation times of 1-1.5 h.


Assuntos
Benzopiranos/química , Indóis/química , Luz , Estruturas Metalorgânicas/química , Nanoporos , Nitrocompostos/química , Cristalização , Isomerismo , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Porosidade , Espectrofotometria Infravermelho , Propriedades de Superfície
11.
Chemistry ; 25(31): 7569-7574, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-30957917

RESUMO

The conditions for the photogeneration of NO linkage isomers at room temperature are studied. By pulsed laser irradiation in the blue spectral range, the long-lived Ru-ON isomer can be generated at room temperature, which is crucial for potential applications, such as holography and data storage. By using static and time-resolved spectroscopy (UV/Vis and IR), we give evidence that the liftime of the Ru-(η2 -(NO)) isomer is a decisive parameter for the formation of the Ru-ON isomer at high temperature owing to a two-step isomerization mechanism Ru-NO→Ru-(η2 -(NO))→Ru-ON. Furthermore, we report the low-temperature structures for each isomer, which were revealed by photocrystallography.

12.
Chemistry ; 25(14): 3606-3616, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30633421

RESUMO

Fifteen new photochromic hybrid materials were synthesized by gas phase loading of fluorinated azobenzenes, namely ortho-tetrafluoroazobenzene (tF-AZB), 4H,4H'-octafluoroazobenzene (oF-AZB), and perfluoroazobenzene (pF-AZB), into the pores of the well-known metal-organic frameworks MOF-5, MIL-53(Al), MIL-53(Ga), MIL-68(Ga), and MIL-68(In). Their composition was analysed by elemental (CHNS) and DSC/TGA. For pF-AZB0.34 @MIL-53(Al), a structural model based on high-resolution synchrotron powder diffraction data was developed and the host-guest and guest-guest interactions were elucidated from this model. These interactions of O-H⋅⋅⋅F and π⋅⋅⋅π type were confirmed by significant shifts of the O-H frequencies in loaded and unloaded MOFs of the MIL-53 and MIL-68 series. Most remarkably, all of the synthesized F-AZB@MOF systems can be switched with visible light, and some of them show almost quantitative (>95 %) photo-isomerization between its E and Z forms with no significant fatigue after repeated switching cycles.

13.
Chemistry ; 25(5): 1304-1325, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30346635

RESUMO

Mononitrosyl-iron compounds (MNICs) of the Enemark-Feltham {FeNO}7 type can be divided into a doublet (S=1/2) and a quartet (S=3/2) spin variant. The latter relies on weak-field co-ligands such as amine carboxylates. Aqua-only co-ligation appears to exist in the long-known "brown-ring" [Fe(H2 O)5 (NO)]2+ cation, which was prepared originally from ferrous salts and NO in sulfuric acid. A chloride variant of this species, the green [FeCl3 (NO)]- ion, was first prepared analoguosly by using hydrochloric instead of sulfuric acid. As a tetrahedral species, it is the simple prototype of sulfur-bonded {FeNO}7 (S=3/2) MNICs of biological significance. Although it has been investigated for more than a century, neither clean preparative routes nor reliable structural parameters were available for the [FeCl3 (NO)]- ion and related species such as the [FeCl2 (NO)2 ]- ion, a prototypical dinitrosyliron species (a "DNIC"). In this work, both issues have been resolved. In addition, we report on a computational study on the ground- and excited-state properties including an assignment of the chromophoric transitions. Photoinduced metastable isomers were characterised in a combined experimental and computational approach that resulted in the confirmation of a single photoinduced linkage isomer of the paramagnetic nitrosyl-metal coordination entity.

14.
Inorg Chem ; 57(17): 10702-10717, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30106571

RESUMO

With the aim of enhancing the biological activity of ruthenium-nitrosyl complexes, new compounds with four equatorially bound indazole ligands, namely, trans-[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O) and trans-[RuOH(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O), have been prepared from trans-[Ru(NO2)2(Hind)4] ([2]). When the pH-dependent solution behavior of [3]Cl2·H2O and [4]Cl2·H2O was studied, two new complexes with two deprotonated indazole ligands were isolated, namely [RuCl(ind)2(Hind)2(NO)] ([5]) and [RuOH(ind)2(Hind)2(NO)] ([6]). All prepared compounds were comprehensively characterized by spectroscopic (IR, UV-vis, 1H NMR) techniques. Compound [2], as well as [3]Cl2·2(CH3)2CO, [4]Cl2·2(CH3)2CO, and [5]·0.8CH2Cl2, the latter three obtained by recrystallization of the first isolated compounds (hydrates or anhydrous species) from acetone and dichloromethane, respectively, were studied by X-ray diffraction methods. The photoinduced release of NO in [3]Cl2 and [4]Cl2 was investigated by cyclic voltammetry and resulting paramagnetic NO species were detected by EPR spectroscopy. The quantum yields of NO release were calculated and found to be low (3-6%), which could be explained by NO dissociation and recombination dynamics, assessed by femtosecond pump-probe spectroscopy. The geometry and electronic parameters of Ru species formed upon NO release were identified by DFT calculations. The complexes [3]Cl2 and [4]Cl2 showed considerable antiproliferative activity in human cancer cell lines with IC50 values in low micromolar or submicromolar concentration range and are suitable for further development as potential anticancer drugs. p53-dependence of Ru-NO complexes [3]Cl2 and [4]Cl2 was studied and p53-independent mode of action was confirmed. The effects of NO release on the cytotoxicity of the complexes with or without light irradiation were investigated using NO scavenger carboxy-PTIO.


Assuntos
Indazóis/química , Óxido Nítrico/química , Óxidos de Nitrogênio , Compostos Organometálicos , Rutênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Western Blotting , Sobrevivência Celular , Cisplatino/farmacologia , Estabilidade de Medicamentos , Eletroquímica , Células HCT116 , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Teoria Quântica , Rutênio/química , Rutênio/farmacologia , Água/química , Difração de Raios X
15.
Inorg Chem ; 56(21): 13100-13110, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29019664

RESUMO

1,3,3-Trimethylindolino-6'-nitrobenzopyrylospiran (SP-1) as an example of a photoswitchable spiropyran was loaded into the pores of different prototypical metal-organic frameworks, namely MOF-5, MIL-68(In), and MIL-68(Ga), by a vapor-phase process. The successful incorporation in the pores of the MOF was proven by X-ray powder diffraction, and the amount of the embedded photoswitchable guest was determined by X-ray photoelectron spectroscopy and elemental analysis. In contrast to the sterically hindered crystalline state, SP-1 embedded in solid MOF hosts shows photoswitching under irradiation with UV light from the spiropyran to its merocyanine form with a nearly complete photoisomerization. Switching can be reversed by heat treatment. These switching properties were confirmed by means of UV/vis and IR spectroscopy. Remarkably, the embedded guest molecules show photoswitching and absorption properties similar to those in the dissolved state, so that MOFs might be considered as "solid solvents" for photoswitchable spiropyrans. In contrast to that, embedment of SP-1 in the smaller pores of MIL-53(Al) was not successful. SP-1 is mainly adsorbed on the surfaces of the MIL-53(Al) particles, which also leads to photoswitching properties.

17.
Dalton Trans ; 53(12): 5732, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450670

RESUMO

Correction for 'Porous oligomeric materials synthesised using a new, highly active precatalyst based on ruthenium(III) and 2-phenylpyridine' by Kacper Poblocki et al., Dalton Trans., 2024, 53, 4194-4203, https://doi.org/10.1039/D3DT04091G.

18.
Dalton Trans ; 53(9): 4194-4203, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38323842

RESUMO

There are few literature reports on using precatalysts based on ruthenium(II/III) ions in the polymerization of olefins. Therefore, a new coordination compound was designed based on ruthenium(III) ion and 2-phenylpyridine. The resulting monocrystal was characterized by X-ray diffraction (XRD), solid-state (photo)IR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The new ruthenium(III) complex compound was used as a precatalyst in the oligomerization reactions of ethylene, 2-propen-1-ol, 2-chloro-2-propen-1-ol, 3-butene-2-ol and 2,3-dibromo-2-propen-1-ol with methylaluminoxane and ethylaluminium dichloride as activators. The catalytic activity of the newly discovered ruthenium(III) complex compound ranges from 159.5 (for 2-chloro-2-propen-1-ol) to 755.6 (for ethylene) g mmol-1 h-1 bar-1, indicating that it is a chemical compound with high catalytic activity. In addition, the oligomerization reaction products were subjected to physicochemical characterization, using BET (Brunauer-Emmett-Teller isotherm), mass spectrometry (MALDI-TOF-MS), Fourier transform infrared (FT-IR) spectroscopy, NMR, TGA, differential scanning calorimetry (DSC), and the morphology of the porous polymeric materials was investigated by SEM. The distinguishing feature of the obtained precatalyst is its high catalytic activity under mild reaction conditions, a rare phenomenon. Compared with other precatalysts, it is the most active ruthenium(II/III) ion-based catalytic material used in oligo- and polymerization reactions of ethylene.

19.
Acta Crystallogr C ; 69(Pt 9): 1002-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24005508

RESUMO

The structure of the photoluminescent compound hexaaquadichloridoneodymium(III) chloride has been redetermined from single-crystal X-ray diffraction data at 100 K, with the aim of providing an accurate structural model for the bulk crystalline material. The crystal structure may be described as a network of [NdCl2(H2O)6](+) cations with distorted square-antiprism geometry around the Nd(III) centre. The Nd(III) cation and the nonbonded Cl(-) anion are both located on twofold symmetry axes. The crystal packing consists of three different neodymium pairs linked by a three-dimensional network of O-H···Cl intermolecular interactions. The pair distribution function (PDF) calculated from the experimentally determined structure is used for the discussion of the local structure.

20.
Dalton Trans ; 52(4): 919-927, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36594625

RESUMO

The first examples of Bi(III) and Sb(III) halide compounds combined with a photoswitchable ruthenium nitrosyl unit are reported. The structures of [RuNOPy4Br]4[Sb2Br8][Sb3Br12]2 (1) and (H3O)[RuNOPy4Br]4[Bi2Br9]3·3H2O (2) were determined by X-ray diffraction, and exhibit three different structural types of group 15 halometalates. Low-temperature IR-spectroscopy measurements reveal that the irradiation of 1 at 365 nm switches a stable Ru-NO (GS) unit to a metastable Ru-ON (MS1) linkage. Moreover, the light excitation of 2 at 365 or 405 nm induces the additional formation of a side-bond isomer Ru-η2-(NO) (MS2). The reverse reactions MS1/MS2 → GS can be induced by red-infrared light irradiation or by heating at temperatures >200 K. The obtained synthetic and spectroscopic data open the way for the preparation of hybrid halide complexes with a variety of photoswitchable complexes (NO2, SO2, N2, etc.), and give an insight into the behavior of light-induced species embedded in polynuclear halides.


Assuntos
Rutênio , Rutênio/química , Antimônio , Bismuto , Óxido Nítrico/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa