Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stat Med ; 43(6): 1194-1212, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38243729

RESUMO

In recent decades, several randomization designs have been proposed in the literature as better alternatives to the traditional permuted block design (PBD), providing higher allocation randomness under the same restriction of the maximum tolerated imbalance (MTI). However, PBD remains the most frequently used method for randomizing subjects in clinical trials. This status quo may reflect an inadequate awareness and appreciation of the statistical properties of these randomization designs, and a lack of simple methods for their implementation. This manuscript presents the analytic results of statistical properties for five randomization designs with MTI restriction based on their steady-state probabilities of the treatment imbalance Markov chain and compares them to those of the PBD. A unified framework for randomization sequence generation and real-time on-demand treatment assignment is proposed for the straightforward implementation of randomization algorithms with explicit formulas of conditional allocation probabilities. Topics associated with the evaluation, selection, and implementation of randomization designs are discussed. It is concluded that for two-arm equal allocation trials, several randomization designs offer stronger protection against selection bias than the PBD does, and their implementation is not necessarily more difficult than the implementation of the PBD.


Assuntos
Modelos Estatísticos , Projetos de Pesquisa , Humanos , Distribuição Aleatória , Viés de Seleção , Probabilidade
2.
Blood ; 134(6): 534-547, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31010847

RESUMO

Targeted therapy is revolutionizing the treatment of cancers, but resistance evolves against these therapies and derogates their success. The phosphatidylinositol 3-kinase delta (PI3K-δ) inhibitor idelalisib has been approved for treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma, but the mechanisms conferring resistance in a subset of patients are unknown. Here, we modeled resistance to PI3K-δ inhibitor in vivo using a serial tumor transfer and treatment scheme in mice. Whole-exome sequencing did not identify any recurrent mutation explaining resistance to PI3K-δ inhibitor. In the murine model, resistance to PI3K-δ inhibitor occurred as a result of a signaling switch mediated by consistent and functionally relevant activation of insulin-like growth factor 1 receptor (IGF1R), resulting in enhanced MAPK signaling in the resistant tumors. Overexpression of IGF1R in vitro demonstrated its prominent role in PI3K-δ inhibitor resistance. IGF1R upregulation in PI3K-δ inhibitor-resistant tumors was mediated by functional activation and enhanced nuclear localization of forkhead box protein O1 transcription factors and glycogen synthase kinase 3ß. In human CLL, high IGF1R expression was associated with trisomy 12. CLL cells from an idelalisib-treated patient showed decreased sensitivity to idelalisib in vitro concomitant with enhanced MAPK signaling and strong upregulation of IGF1R upon idelalisib exposure. Thus, our results highlight that alternative signaling cascades play a predominant role in the resistance and survival of cancer cells under PI3K-δ inhibition. We also demonstrate that these pathway alterations can serve as therapeutic targets, because inhibition of IGF1R offered efficacious salvage treatment of PI3K-δ inhibitor-resistant tumors in vitro and in vivo.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Receptor IGF Tipo 1/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Mutação , Receptor IGF Tipo 1/genética , Resultado do Tratamento , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Genes Chromosomes Cancer ; 59(4): 261-267, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31677197

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is an aggressive tumor with leukemic presentation of mature T-lymphocytes. Here, we aimed at characterizing the initial events in the molecular pathogenesis of T-PLL and particularly, at determining the point in T-cell differentiation when the hallmark oncogenic events, that is, inv(14)(q11q32)/t(14;14)(q11;q32) and t(X;14)(q28;q11) occur. To this end, we mined whole genome and transcriptome sequencing data of 17 and 11 T-PLL cases, respectively. Mapping of the 14q32.1 locus breakpoints identified only TCL1A, which was moreover significantly overexpressed in T-PLL as compared to benign CD4+ and CD8+ T-cells, as the only common oncogenic target of aberrations. In cases with t(14;14), the breakpoints mapped telomeric and in cases with inv(14) centromeric or in the 3'-untranslated region of TCL1A. Regarding the T-cell receptor alpha (TRA) locus-TCL1A breakpoint junctions, all 17 breakpoints involved recombination signal sequences and 15 junctions contained nontemplated (N-) nucleotides. All T-PLL cases studied carried in-frame TRA rearrangements on the intact allele, which skewed significantly toward usage of distal/central TRAV/TRAJ gene segments as compared to the illegitimate TRA rearrangements. Our findings suggest that the oncogenic TRA-TCL1A/MTCP1 rearrangements in T-PLL occur during opening of the TRA locus, that is, during the progression from CD4+ immature single positive to early double positive thymocyte stage, just before physiologic TCL1A expression is silenced. The cell carrying such an oncogenic event continues maturation and rearranges the second TRA allele to achieve a functional T-cell receptor. Thereafter, it switches off RAG and DNTT expression in line with the mature T-cell phenotype at presentation of T-PLL.


Assuntos
Rearranjo Gênico , Predisposição Genética para Doença , Leucemia Prolinfocítica de Células T/genética , Receptores de Antígenos de Linfócitos T/genética , Transcriptoma , Sequenciamento Completo do Genoma , Alelos , Aberrações Cromossômicas , Estudo de Associação Genômica Ampla , Humanos , Leucemia Prolinfocítica de Células T/diagnóstico , Proteínas de Fusão Oncogênica/genética , Fenótipo
4.
Br J Haematol ; 189(1): 133-145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31724172

RESUMO

Chronic lymphocytic leukaemia (CLL) is associated with alterations in T cell number, subset distribution and function. Among these changes, an increase in CD4+ T cells was reported. CD4+ T cells are a heterogeneous population and distinct subsets have been described to exert pro- and anti-tumour functions. In CLL, controversial reports describing the dominance of IFNγ-expressing Th1 T cells or of IL-4-producing Th2 T cells exist. Our study shows that blood of CLL patients is enriched in Th1 T cells producing high amounts of IFNγ. Moreover, we observed that their frequency remains relatively stable in CLL patients over a time course of five years. Furthermore, we provide evidence for an accumulation of Th1 T cells in the Eµ-TCL1 mouse model of CLL. As TBET (encoded by Tbx21) is a crucial transcription factor for Th1 polarization, we generated Tbx21-/- bone marrow chimaeric mice which showed a lower number of IFNγ-producing Th1 T cells, and used them for adoptive transfer of Eµ-TCL1 leukaemia. Disease development in these mice was, however, comparable to that in wild-type controls, excluding a major role for TBET-expressing Th1 cells in Eµ-TCL1 leukaemia. Collectively, our data highlight that Th1 T cells accumulate in CLL but reducing their number has no impact on disease development.


Assuntos
Regulação Leucêmica da Expressão Gênica/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Proteínas com Domínio T/imunologia , Células Th1/imunologia , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas com Domínio T/genética , Células Th1/patologia
5.
Curr Oncol Rep ; 22(2): 16, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32025827

RESUMO

PURPOSE OF REVIEW: Over the last years, targeted anticancer therapy with small molecule inhibitors and antibodies has much replaced chemoimmunotherapy, which has been the gold standard of care for patients with chronic lymphocytic leukemia (CLL). Here we give an overview of novel targeted agents used in therapy of chronic lymphocytic leukemia, as well as efforts to overcome resistance development, focusing on approved drugs since they gained high relevance in clinical practice. RECENT FINDINGS: Novel agents moved to the forefront as a treatment strategy of CLL due to their outstanding efficacy, almost irrespectively of the underlying genetic features. Inhibition of Bruton's tyrosine kinase (BTK), a key molecule in the B cell receptor pathway, achieved dramatic efficacy even in poor-risk and chemo-refractory patients. Further success was accomplished with venetoclax, which specifically inhibits anti-apoptotic BCL2 and induces apoptosis of CLL cells. Inhibition of BTK or BCL2 is very effective and induces prolongation of progression-free and overall survival. Approved combination treatments such as venetoclax or ibrutinib with obinutuzumab show high responses rates and long remission durations. However, evolution and selection of subclones with continuous treatment leads to resistance towards these novel drugs and disease relapse. Hence, comparison of sequential treatment with combinations and discontinuation of therapy are important aspects which need to be investigated.


Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Terapia Combinada , Humanos , Imunoterapia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/uso terapêutico
6.
Recent Results Cancer Res ; 212: 215-242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30069633

RESUMO

Over the last years, targeted anti-cancer therapy with small-molecule inhibitors and antibodies moved to the forefront as a strategy to treat hematological cancers. These novel agents showed outstanding effects in treatment of patients, often irrespective of their underlying genetic features. However, evolution and selection of subclones with continuous treatment leads to disease relapse and resistance toward these novel drugs. Venetoclax (ABT-199) is a novel, orally bioavailable small-molecule inhibitor for selective targeting of B-cell lymphoma 2 (BCL2). Venetoclax is in clinical development and shows high efficacy and safety in particular in the treatment of chronic lymphocytic leukemia (CLL), but preliminarily also in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). The most important and impressive outcomes of venetoclax treatment include a rapid induction of apoptosis and drastic reduction of the tumor bulk within a few hours after administration. Venetoclax was approved by the FDA and EMA in 2016 for patients with previously treated CLL with del(17p13) and patients failing B cell receptor signaling inhibitors (EMA only), on the basis of a single-arm phase II trial demonstrating a tremendous response rate of 79% with complete remission in 20% of cases and an estimated 1-year progression-free survival of 72%. This review focuses on the mode of action, the preclinical models, and outcomes from various clinical trials with venetoclax in different hematologic cancers as well as future development.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Humanos
7.
Int J Mol Sci ; 19(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501048

RESUMO

Liver cholestasis is a chronic liver disease and a major health problem worldwide. Cholestasis is characterised by a decrease in bile flow due to impaired secretion by hepatocytes or by obstruction of bile flow through intra- or extrahepatic bile ducts. Thereby cholestasis can induce ductal proliferation, hepatocyte injury and liver fibrosis. Notch signalling promotes the formation and maturation of bile duct structures. Here we investigated the liver regeneration process in the context of cholestasis induced by disruption of the Notch signalling pathway. Liver-specific deletion of recombination signal binding protein for immunoglobulin kappa j region (Rbpj), which represents a key regulator of Notch signalling, induces severe cholestasis through impaired intra-hepatic bile duct (IHBD) maturation, severe necrosis and increased lethality. Deregulation of the biliary compartment and cholestasis are associated with the change of several signalling pathways including a Kyoto Encyclopedia of Genes and Genomes (KEGG) gene set representing the Hippo pathway, further yes-associated protein (YAP) activation and upregulation of SRY (sex determining region Y)-box 9 (SOX9), which is associated with transdifferentiation of hepatocytes. SOX9 upregulation in cholestatic liver injury in vitro is independent of Notch signalling. We could comprehensively address that in vivo Rbpj depletion is followed by YAP activation, which influences the transdifferentiation of hepatocytes and thereby contributing to liver regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colestase/metabolismo , Regeneração Hepática/fisiologia , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ductos Biliares/metabolismo , Ductos Biliares/fisiologia , Western Blotting , Proteínas de Ciclo Celular , Transdiferenciação Celular/genética , Transdiferenciação Celular/fisiologia , Células Cultivadas , Colestase/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Regeneração Hepática/genética , Masculino , Camundongos , Fosfoproteínas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas de Sinalização YAP
8.
Ann Neurol ; 77(1): 15-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363075

RESUMO

OBJECTIVE: Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression. MATERIALS AND METHODS: We tested whether pharmacological or genetic activation of PGC-1α or PGC-11α knockdown could modulate the oligomerization of α-syn in vitro by using an α-syn -fragment complementation assay. RESULTS: In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the central nervous system (CNS)-specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, downregulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α-deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn-mediated toxicity. INTERPRETATION: Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization form a vicious circle, thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies.


Assuntos
Regulação da Expressão Gênica/genética , PPAR gama/genética , PPAR gama/metabolismo , Substância Negra/metabolismo , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Doença de Parkinson/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Resveratrol , Estilbenos/farmacologia , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/genética , alfa-Sinucleína/genética
10.
Hepatology ; 53(5): 1608-17, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21520174

RESUMO

UNLABELLED: Telomere shortening impairs liver regeneration in mice and is associated with cirrhosis formation in humans with chronic liver disease. In humans, telomerase mutations have been associated with familial diseases leading to bone marrow failure or lung fibrosis. It is currently unknown whether telomerase mutations associate with cirrhosis induced by chronic liver disease. The telomerase RNA component (TERC) and the telomerase reverse transcriptase (TERT) were sequenced in 1,121 individuals (521 patients with cirrhosis induced by chronic liver disease and 600 noncirrhosis controls). Telomere length was analyzed in patients carrying telomerase gene mutations. Functional defects of telomerase gene mutations were investigated in primary human fibroblasts and patient-derived lymphocytes. An increased incidence of telomerase mutations was detected in cirrhosis patients (allele frequency 0.017) compared to noncirrhosis controls (0.003, P value 0.0007; relative risk [RR] 1.859; 95% confidence interval [CI] 1.552-2.227). Cirrhosis patients with TERT mutations showed shortened telomeres in white blood cells compared to control patients. Cirrhosis-associated telomerase mutations led to reduced telomerase activity and defects in maintaining telomere length and the replicative potential of primary cells in culture. CONCLUSION: This study provides the first experimental evidence that telomerase gene mutations are present in patients developing cirrhosis as a consequence of chronic liver disease. These data support the concept that telomere shortening can represent a causal factor impairing liver regeneration and accelerating cirrhosis formation in response to chronic liver disease.


Assuntos
Cirrose Hepática/genética , Mutação , Telomerase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Feminino , Humanos , Cirrose Hepática/etiologia , Hepatopatias/complicações , Masculino , Pessoa de Meia-Idade
11.
Brain ; 134(Pt 7): 2044-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21672962

RESUMO

Alzheimer's disease is a neurodegenerative disorder of the elderly and advancing age is the major risk factor for Alzheimer's disease development. Telomere shortening represents one of the molecular causes of ageing that limits the proliferative capacity of cells, including neural stem cells. Studies on telomere lengths in patients with Alzheimer's disease have revealed contrary results and the functional role of telomere shortening on brain ageing and Alzheimer's disease is not known. Here, we have investigated the effects of telomere shortening on adult neurogenesis and Alzheimer's disease progression in mice. The study shows that aged telomerase knockout mice with short telomeres (G3Terc-/-) exhibit reduced dentate gyrus neurogenesis and loss of neurons in hippocampus and frontal cortex, associated with short-term memory deficit in comparison to mice with long telomere reserves (Terc+/+). In contrast, telomere shortening improved the spatial learning ability of ageing APP23 transgenic mice, a mouse model for Alzheimer's disease. Telomere shortening was also associated with an activation of microglia in ageing amyloid-free brain. However, in APP23 transgenic mice, telomere shortening reduced both amyloid plaque pathology and reactive microgliosis. Together, these results provide the first experimental evidence that telomere shortening, despite impairing adult neurogenesis and maintenance of post-mitotic neurons, can slow down the progression of amyloid plaque pathology in Alzheimer's disease, possibly involving telomere-dependent effects on microglia activation.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Hipocampo/patologia , Neurônios/ultraestrutura , Placa Amiloide/patologia , Telômero/patologia , Fatores Etários , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Bromodesoxiuridina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo Celular/genética , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Microscopia Eletrônica de Transmissão/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/genética , Neurônios/patologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Presenilina-1/metabolismo , Sinapses/ultraestrutura , Telomerase/deficiência , Telômero/genética , Telômero/ultraestrutura
12.
Exp Hematol ; 93: 61-69.e4, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186626

RESUMO

The immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide are approved drugs for the treatment of multiple myeloma. IMiDs induce cereblon (CRBN) E3 ubiquitin ligase-mediated ubiquitination and degradation of Ikaros transcription factors Ikaros (IKZF1) and Aiolos (IKZF3), which are essential for multiple myeloma. However, because of a single amino acid substitution of valine to isoleucine in mouse CRBN at position 391, mice are not susceptible to IMiD-induced degradation of neosubstrates. Here, we report that expression of human CRBN or the CrbnI391V mutant enables IMiD-induced degradation of IKZF1 and IKZF3 in murine MOPC.315.BM.Luc.eGFP and 5T33MM multiple myeloma cells. Accordingly, lenalidomide and pomalidomide decreased cell viability in a dose-dependent fashion in murine multiple myeloma cells expressing CrbnI391V in vitro. The sensitivity of murine cells expressing CrbnI391V to IMiDs highly correlated with their dependence on IKZF1. After transplantation, MOPC.315.BM.Luc.eGFP cells expressing murine CrbnI391V induced multiple myeloma in mice, and treatment with lenalidomide and pomalidomide significantly delayed tumor growth. This straightforward model provides a proof-of-concept for studying the effects of IMiDs in multiple myeloma in mice, which allows for in vivo testing of IMiDs and other CRBN E3 ligase modulators.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores Imunológicos/farmacologia , Lenalidomida/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Fatores Imunológicos/uso terapêutico , Lenalidomida/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Mieloma Múltiplo/genética , Mutação Puntual , Proteólise/efeitos dos fármacos , Talidomida/farmacologia , Talidomida/uso terapêutico
13.
Nat Commun ; 12(1): 5395, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518531

RESUMO

Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.


Assuntos
Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Instabilidade Genômica , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteína Supressora de Tumor p53/genética
14.
Leukemia ; 34(2): 404-415, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31576005

RESUMO

BRCA1/BRCA2-containing complex 3 (BRCC3) is a Lysine 63-specific deubiquitinating enzyme (DUB) involved in inflammasome activity, interferon signaling, and DNA damage repair. Recurrent mutations in BRCC3 have been reported in myelodysplastic syndromes (MDS) but not in de novo AML. In one of our recent studies, we found BRCC3 mutations selectively in 9/191 (4.7%) cases with t(8;21)(q22;q22.1) AML but not in 160 cases of inv(16)(p13.1q22) AML. Clinically, AML patients with BRCC3 mutations had an excellent outcome with an event-free survival of 100%. Inactivation of BRCC3 by CRISPR/Cas9 resulted in improved proliferation in t(8;21)(q22;q22.1) positive AML cell lines and together with expression of AML1-ETO induced unlimited self-renewal in mouse hematopoietic progenitor cells in vitro. Mutations in BRCC3 abrogated its deubiquitinating activity on IFNAR1 resulting in an impaired interferon response and led to diminished inflammasome activity. In addition, BRCC3 inactivation increased release of several cytokines including G-CSF which enhanced proliferation of AML cell lines with t(8;21)(q22;q22.1). Cell lines and primary mouse cells with inactivation of BRCC3 had a higher sensitivity to doxorubicin due to an impaired DNA damage response providing a possible explanation for the favorable outcome of BRCC3 mutated AML patients.


Assuntos
Enzimas Desubiquitinantes/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citocinas/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Doxorrubicina/farmacologia , Fator Estimulador de Colônias de Granulócitos/genética , Células HEK293 , Humanos , Inflamassomos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
15.
Leukemia ; 34(4): 1125-1134, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31728056

RESUMO

Accumulation of DNA damage and myeloid-skewed differentiation characterize aging of the hematopoietic system, yet underlying mechanisms remain incompletely understood. Here, we show that aging hematopoietic progenitor cells particularly of the myeloid branch exhibit enhanced resistance to bulky DNA lesions-a relevant type of DNA damage induced by toxins such as cancer drugs or endogenous aldehydes. We identified aging-associated activation of the Hedgehog (Hh) pathway to be connected to this phenotype. Inhibition of Hh signaling reverts DNA damage tolerance and DNA damage-resistant proliferation in aged hematopoietic progenitors. Vice versa, elevating Hh activity in young hematopoietic progenitors is sufficient to impair DNA damage responses. Altogether, these findings provide experimental evidence for aging-associated increases in Hh activity driving DNA damage tolerance in myeloid progenitors and myeloid-skewed differentiation. Modulation of Hh activity could thus be explored as a therapeutic strategy to prevent DNA damage tolerance, myeloid skewing, and disease development in the aging hematopoietic system.


Assuntos
Envelhecimento , Diferenciação Celular , Dano ao DNA , Proteínas Hedgehog/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/patologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Alcaloides de Veratrum/farmacologia
16.
Leukemia ; 34(1): 115-127, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31300746

RESUMO

Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental non-malignant cells for survival. We compared the transcriptomes of primary CLL cells cocultured or not with protective bone marrow stromal cells (BMSCs) and found that oxidative phosphorylation, mitochondrial function, and hypoxic signaling undergo most significant dysregulation in non-protected CLL cells, with the changes peaking at 6-8 h, directly before induction of apoptosis. A subset of CLL patients displayed a gene expression signature resembling that of cocultured CLL cells and had significantly worse progression-free and overall survival. To identify drugs blocking BMSC-mediated support, we compared the relevant transcriptomic changes to the Connectivity Map database. Correlation was found with the transcriptomic signatures of the cardiac glycoside ouabain and of the ipecac alkaloids emetine and cephaeline. These compounds were highly active against protected primary CLL cells (relative IC50's 287, 190, and 35 nM, respectively) and acted by repressing HIF-1α and disturbing intracellular redox homeostasis. We tested emetine in a murine model of CLL and observed decreased CLL cells in peripheral blood, spleen, and bone marrow, recovery of hematological parameters and doubling of median survival (31.5 vs. 15 days, P = 0.0001). Pathways regulating redox homeostasis are thus therapeutically targetable mediators of microenvironmental support in CLL cells.


Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Estresse Oxidativo/fisiologia , Microambiente Tumoral/fisiologia , Animais , Técnicas de Cocultura , Emetina/farmacologia , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
17.
Leukemia ; 33(6): 1427-1438, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30573773

RESUMO

Targeting B-cell receptor signaling using the PI3Kδ inhibitor idelalisib is a highly effective treatment option for relapsed/refractory chronic lymphocytic leukemia (CLL) patients. In addition to its direct impact on tumor cells, PI3Kδ inhibition can modulate the activity of regulatory T-cells (Tregs) resulting in enhanced anti-tumoral immune functions which may contribute to the success of PI3Kδ inhibitors in cancer therapy. The role of Tregs in CLL and their modulation by PI3Kδ inhibitors was so far poorly understood. Using the Eµ-TCL1 adoptive transfer model of CLL, we show that disease development induces the accumulation of activated and highly immunosuppressive Tregs. Depletion of CD25+ Tregs using anti-CD25 antibodies resulted in enhanced CD8+ T-cell activation, effector differentiation, and functional capacity. We further show that pharmacological inhibition of PI3Kδ effectively controlled disease and significantly decreased both CD25+ and CD25- Treg numbers, proliferation and activation status in CLL-bearing mice. Nonetheless, this PI3Kδ-mediated decrease in Tregs did not translate into better CD8+ T-cell function, as PI3Kδ inhibition concomitantly abrogated T-cell receptor signaling in CD8+ T-cells leading to decreased activation, effector cell differentiation and proliferation. Collectively, these data highlight the strong immunomodulatory effects of PI3Kδ inhibitors in CLL and are of relevance for a rational design of idelalisib-based combination therapies in CLL.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/imunologia , Purinas/farmacologia , Quinazolinonas/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Células Tumorais Cultivadas
18.
Cell Death Dis ; 10(8): 571, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358732

RESUMO

Deregulated cell death pathways contribute to leukemogenesis and treatment failure in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Intrinsic apoptosis signaling is regulated by different proapoptotic and antiapoptotic molecules: proapoptotic BCL-2 homology domain 3 (BH3) proteins activate prodeath molecules leading to cellular death, while antiapoptotic molecules including B-cell lymphoma 2 (BCL-2) prevent activation of prodeath proteins and counter-regulate apoptosis induction. Inhibition of these antiapoptotic regulators has become a promising strategy for anticancer treatment, but variable anticancer activities in different malignancies indicate the need for upfront identification of responsive patients. Here, we investigated the activity of the BCL-2 inhibitor venetoclax (VEN, ABT-199) in B-cell precursor acute lymphoblastic leukemia and found heterogeneous sensitivities in BCP-ALL cell lines and in a series of patient-derived primografts. To identify parameters of sensitivity and resistance, we evaluated genetic aberrations, gene-expression profiles, expression levels of apoptosis regulators, and functional apoptosis parameters analyzed by mitochondrial profiling using recombinant BH3-like peptides. Importantly, ex vivo VEN sensitivity was most accurately associated with functional BCL-2 dependence detected by BH3 profiling. Modeling clinical application of VEN in a preclinical trial in a set of individual ALL primografts, we identified that leukemia-free survival of VEN treated mice was precisely determined by functional BCL-2 dependence. Moreover, the predictive value of ex vivo measured functional BCL-2 dependence for preclinical in vivo VEN response was confirmed in an independent set of primograft ALL including T- and high risk-ALL. Thus, integrative analysis of the apoptosis signaling indicating mitochondrial addiction to BCL-2 accurately predicts antileukemia activity of VEN, robustly identifies VEN-responsive patients, and provides information for stratification and clinical guidance in future clinical applications of VEN in patients with ALL.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais/efeitos dos fármacos
19.
Leukemia ; 33(9): 2183-2194, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30911113

RESUMO

Telomere length in chronic lymphocytic leukemia (CLL) has been shown to be of prognostic importance, but the analyses have largely been executed on heterogeneous patient cohorts outside of clinical trials. In the present study, we performed a comprehensive analysis of telomere length associations in the well characterized CLL8 trial (n = 620) of the German CLL study group, with validation in a representative cohort of the CLL4 trial (n = 293). Absolute telomere length was analyzed using quantitative-PCR. Apart from identifying associations of short telomere length with adverse prognostic factors and survival, the study identified cases with 17p- and 11q- associated with TP53 and ATM loss, respectively, to have the shortest telomeres, even when these aberrations were present in small subclones. Thus, telomere shortening may precede acquisition of the high-risk aberrations, contributing to disease evolution. In line with this, telomere shortening was associated with an increase in genomic complexity as well as clonal evolution, highlighting its importance as a biomarker especially in monitoring disease progression in non-high-risk CLL.


Assuntos
Evolução Clonal/genética , Leucemia Linfocítica Crônica de Células B/genética , Encurtamento do Telômero/genética , Telômero/genética , Estudos de Casos e Controles , Feminino , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
20.
Leuk Lymphoma ; 59(7): 1614-1623, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29063805

RESUMO

Telomere length in chronic lymphocytic leukemia (CLL) is described as an independent prognostic factor based largely on previously untreated patients from chemotherapy based trials. Here, we studied telomere length associations in high-risk, relapsed/refractory CLL treated with alemtuzumab in the CLL2O study (n = 110) of German and French CLL study groups. Telomere length (median 3.28 kb, range 2.52-7.24 kb) was relatively short, since 84.4% of patients had 17p- which is generally associated with short telomeres. Median telomere length was used for dichotomization into short and long telomere subgroups. Telomere length was associated with s-TK (p = .025) and TP53 mutations (p = .050) in untreated patients, while no association with clinical/biological characteristics was observed in relapsed/refractory CLL. Short telomeres had significant association with shorter PFS (p = .018) only in refractory CLL. Presence of short telomeres, loss of genes maintaining genomic integrity (SMC5) and increased incidence of chromothripsis, indicated the prevalence of genomic instability in this high-risk cohort (clinicaltrials.gov: NCT01392079).


Assuntos
Estudos de Associação Genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Homeostase do Telômero/genética , Telômero/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Aberrações Cromossômicas , Instabilidade Genômica , Humanos , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/terapia , Mutação , Polimorfismo de Nucleotídeo Único , Prognóstico , Análise de Sobrevida , Encurtamento do Telômero , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa