Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell ; 169(4): 651-663.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475894

RESUMO

The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome.


Assuntos
Fígado/citologia , Fígado/fisiologia , Ribossomos/metabolismo , Animais , Núcleo Celular/metabolismo , Tamanho Celular , Ritmo Circadiano , Exossomos/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotoperíodo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Ribossomos/química
2.
Mol Cell ; 83(19): 3399-3401, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802021

RESUMO

In this issue of Molecular Cell, Zhu et al.1 demonstrate that REV-ERBα and its co-repressor NCOR1 are assembled into daytime-dependent liquid droplets that constitute hubs in which the transcription of multiple REV-ERBα target genes is simultaneously repressed.


Assuntos
Ritmo Circadiano , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Ritmo Circadiano/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas
3.
Mol Cell ; 81(24): 4958-4959, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919816

RESUMO

Sleep-wake cycles are orchestrated by the circadian clock and a sleep homeostat that records accumulating sleep pressure. Zada et al. (2021) now show that DNA lesions, recognized by PARP-1, accumulate in neurons of zebrafish larvae and promote homeostatic sleep pressure.


Assuntos
Ritmo Circadiano , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Ritmo Circadiano/genética , Dano ao DNA , Homeostase , Sono , Peixe-Zebra/genética
4.
Genes Dev ; 35(15-16): 1076-1078, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341001

RESUMO

In mammals, virtually all body cells harbor cell-autonomous and self-sustained circadian oscillators that rely on delayed negative feedback loops in gene expression. Transcriptional activation and repression play a major role in keeping these clocks ticking, but numerous post-translational mechanisms-and particularly the phosphorylation of core clock components by protein kinases-are also critically involved in setting the pace of these timekeepers. In this issue of Genes & Development, Klemz and colleagues (pp. 1161-1174) now show how dephosphorylation of BMAL1 by protein phosphatase 4 (PPP4) participates in the modulation of circadian timing.


Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Fosforilação , Processamento de Proteína Pós-Traducional
5.
Genes Dev ; 35(5-6): 329-334, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602874

RESUMO

It has been assumed that the suprachiasmatic nucleus (SCN) synchronizes peripheral circadian oscillators. However, this has never been convincingly shown, since biochemical time series experiments are not feasible in behaviorally arrhythmic animals. By using long-term bioluminescence recording in freely moving mice, we show that the SCN is indeed required for maintaining synchrony between organs. Surprisingly, however, circadian oscillations persist in the livers of mice devoid of an SCN or oscillators in cells other than hepatocytes. Hence, similar to SCN neurons, hepatocytes can maintain phase coherence in the absence of Zeitgeber signals produced by other organs or environmental cycles.


Assuntos
Relógios Circadianos/fisiologia , Hepatócitos/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/cirurgia
6.
Cell ; 155(6): 1211-2, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315091

RESUMO

Glucocorticoids, which have been implied in mood modulation, display robust diurnal oscillations in the blood. But does their circadian rhythm regulate mood swings? Ikeda et al. now identify a paracrine signaling pathway in the adrenal cortex that potentiates the daily amplitude of plasma glucocorticoids and renders female mice braver.


Assuntos
Ansiedade/metabolismo , Ritmo Circadiano , Glucocorticoides/metabolismo , Receptores CXCR/metabolismo , Animais , Feminino , Humanos , Masculino
7.
Cell ; 152(3): 492-503, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374345

RESUMO

In peripheral tissues circadian gene expression can be driven either by local oscillators or by cyclic systemic cues controlled by the master clock in the brain's suprachiasmatic nucleus. In the latter case, systemic signals can activate immediate early transcription factors (IETFs) and thereby control rhythmic transcription. In order to identify IETFs induced by diurnal blood-borne signals, we developed an unbiased experimental strategy, dubbed Synthetic TAndem Repeat PROMoter (STAR-PROM) screening. This technique relies on the observation that most transcription factor binding sites exist at a relatively high frequency in random DNA sequences. Using STAR-PROM we identified serum response factor (SRF) as an IETF responding to oscillating signaling proteins present in human and rodent sera. Our data suggest that in mouse liver SRF is regulated via dramatic diurnal changes of actin dynamics, leading to the rhythmic translocation of the SRF coactivator Myocardin-related transcription factor-B (MRTF-B) into the nucleus.


Assuntos
Actinas/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica , Técnicas Genéticas , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Masculino , Camundongos , Proteínas Circadianas Period/metabolismo , Ratos , Fatores de Transcrição/metabolismo
8.
Mol Cell ; 78(5): 805-807, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502419

RESUMO

The amplitude of circadian rhythms dampens with age, but Levine et al. (2020) now show that nicotinamide adenine dinucleotide (NAD+) can restore robust circadian gene expression and behavior in aged mice through SIRT1-dependent deacetylation of the core clock protein PER2.


Assuntos
Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores Etários , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Humanos , Camundongos , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
9.
Cell ; 169(7): 1162-1167, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622500
10.
Cell ; 146(4): 497-9, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21854974

RESUMO

Interactions of transcription factors with chromatin are highly dynamic. Now Voss et al. (2011) demonstrate that two transcription factors with identical DNA-binding specificities do not compete for occupancy at a given DNA element, but instead, one factor can even facilitate the binding of another. This assisted loading probably involves chromatin-remodeling machines.

11.
12.
Cell ; 140(4): 458-9, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20178739

RESUMO

In cyanobacteria cell division is intimately linked with the circadian cycle. Dong et al. (2010) now identify components of the circadian clock that regulate the formation of the midcell ring for cytokinesis, revealing a critical link between the circadian cycle and the control of cell division.


Assuntos
Divisão Celular , Ritmo Circadiano , Cianobactérias/citologia , Cianobactérias/fisiologia , Relógios Biológicos
13.
Cell ; 142(6): 943-53, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20832105

RESUMO

Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Comportamento Alimentar , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética
14.
Mol Cell ; 67(5): 727-729, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886333

RESUMO

In this issue of Molecular Cell, two papers address the biochemical structure of a large protein complex containing components of the mammalian circadian clock (Aryal et al., 2017) and a mechanism rendering this molecular timekeeper temperature-compensated (Shinohara et al., 2017).


Assuntos
Ritmo Circadiano , Mamíferos , Animais , Proteínas CLOCK , Relógios Circadianos
15.
Eur J Neurosci ; 60(2): 3891-3900, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837456

RESUMO

The mammalian circadian timing system has a hierarchical architecture, with a central pacemaker located in the brain's suprachiasmatic nucleus orchestrating rhythms in behaviour and physiology. In cooperation with environmental cycles, it synchronizes the phases of peripheral oscillators operating in most cells of the body. Even cells kept in tissue culture harbour self-sustained and cell-autonomous circadian clocks that keep ticking throughout their lifespan. The master pacemaker in the suprachiasmatic nucleus is synchronized primarily by light-dark cycles, whereas peripheral oscillators are phase entrained by a multitude of systemic signalling pathways. These include pathways depending on feeding-fasting cycles, cellular actin polymerization dynamics, endocrine rhythms and, surprisingly, body temperature oscillations. Using tissue culture and murine models, Steve Brown was the first one to demonstrate that shallow rhythms of mammalian body temperature are timing cues (zeitgebers) for peripheral circadian clocks.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Animais , Humanos , Temperatura Corporal/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , História do Século XX , História do Século XXI
16.
Genes Dev ; 30(16): 1895-907, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27601530

RESUMO

The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells.


Assuntos
Estudos de Associação Genética/métodos , Regiões Promotoras Genéticas/genética , Sequências de Repetição em Tandem/genética , Fatores de Transcrição/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , Depsipeptídeos/farmacologia , Técnicas de Silenciamento de Genes , Genes Sintéticos , Técnicas Genéticas/normas , Humanos , Camundongos , Fator de Resposta Sérica/genética , Transdução de Sinais , Vimblastina/farmacologia
17.
Genes Dev ; 30(17): 2005-17, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633015

RESUMO

In mammals, body temperature fluctuates diurnally around a mean value of 36°C-37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells' circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide "approach to steady-state" kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression.


Assuntos
Regulação da Expressão Gênica , Processamento de Proteína/fisiologia , Proteínas de Ligação a RNA/metabolismo , Temperatura , Animais , Temperatura Corporal , Temperatura Baixa , Estudo de Associação Genômica Ampla , Fígado/metabolismo , Camundongos , Células NIH 3T3 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Cell ; 134(2): 317-28, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662546

RESUMO

The mammalian circadian timing system is composed of a central pacemaker in the suprachiasmatic nucleus of the brain that synchronizes countless subsidiary oscillators in peripheral tissues. The rhythm-generating mechanism is thought to rely on a feedback loop involving positively and negatively acting transcription factors. BMAL1 and CLOCK activate the expression of Period (Per) and Cryptochrome (Cry) genes, and once PER and CRY proteins accumulate to a critical level they form complexes with BMAL1-CLOCK heterodimers and thereby repress the transcription of their own genes. Here, we show that SIRT1, an NAD(+)-dependent protein deacetylase, is required for high-magnitude circadian transcription of several core clock genes, including Bmal1, Rorgamma, Per2, and Cry1. SIRT1 binds CLOCK-BMAL1 in a circadian manner and promotes the deacetylation and degradation of PER2. Given the NAD(+) dependence of SIRT1 deacetylase activity, it is likely that SIRT1 connects cellular metabolism to the circadian core clockwork circuitry.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano , Proteínas Nucleares/metabolismo , Sirtuínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição ARNTL , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas CLOCK , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Circadianas Period , Sirtuína 1
19.
Genes Dev ; 27(13): 1526-36, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824542

RESUMO

The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) in the hypothalamus, which is thought to set the phase of slave oscillators in virtually all body cells. However, due to the lack of appropriate in vivo recording technologies, it has been difficult to study how the SCN synchronizes oscillators in peripheral tissues. Here we describe the real-time recording of bioluminescence emitted by hepatocytes expressing circadian luciferase reporter genes in freely moving mice. The technology employs a device dubbed RT-Biolumicorder, which consists of a cylindrical cage with reflecting conical walls that channel photons toward a photomultiplier tube. The monitoring of circadian liver gene expression revealed that hepatocyte oscillators of SCN-lesioned mice synchronized more rapidly to feeding cycles than hepatocyte clocks of intact mice. Hence, the SCN uses signaling pathways that counteract those of feeding rhythms when their phase is in conflict with its own phase.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano , Regulação da Expressão Gênica , Hepatócitos/fisiologia , Fígado/metabolismo , Atividade Motora/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Comportamento Alimentar , Fígado/citologia , Medições Luminescentes , Masculino , Camundongos , Camundongos Pelados , Atividade Motora/genética , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/cirurgia
20.
PLoS Biol ; 15(4): e2001069, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28414715

RESUMO

Many organisms exhibit temporal rhythms in gene expression that propel diurnal cycles in physiology. In the liver of mammals, these rhythms are controlled by transcription-translation feedback loops of the core circadian clock and by feeding-fasting cycles. To better understand the regulatory interplay between the circadian clock and feeding rhythms, we mapped DNase I hypersensitive sites (DHSs) in the mouse liver during a diurnal cycle. The intensity of DNase I cleavages cycled at a substantial fraction of all DHSs, suggesting that DHSs harbor regulatory elements that control rhythmic transcription. Using chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq), we found that hypersensitivity cycled in phase with RNA polymerase II (Pol II) loading and H3K27ac histone marks. We then combined the DHSs with temporal Pol II profiles in wild-type (WT) and Bmal1-/- livers to computationally identify transcription factors through which the core clock and feeding-fasting cycles control diurnal rhythms in transcription. While a similar number of mRNAs accumulated rhythmically in Bmal1-/- compared to WT livers, the amplitudes in Bmal1-/- were generally lower. The residual rhythms in Bmal1-/- reflected transcriptional regulators mediating feeding-fasting responses as well as responses to rhythmic systemic signals. Finally, the analysis of DNase I cuts at nucleotide resolution showed dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1 complexes. Structural modeling suggested that these footprints are driven by a transient heterotetramer binding configuration at peak activity. Together, our temporal DNase I mappings allowed us to decipher the global regulation of diurnal transcription rhythms in the mouse liver.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Fígado/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Imunoprecipitação da Cromatina , Relógios Circadianos/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Jejum , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa