Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 26(Pt 4): 1073-1084, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274430

RESUMO

The SwissFEL soft X-ray free-electron laser (FEL) beamline Athos will be ready for user operation in 2021. Its design includes a novel layout of alternating magnetic chicanes and short undulator segments. Together with the APPLE X architecture of undulators, the Athos branch can be operated in different modes producing FEL beams with unique characteristics ranging from attosecond pulse length to high-power modes. Further space has been reserved for upgrades including modulators and an external seeding laser for better timing control. All of these schemes rely on state-of-the-art technologies described in this overview. The optical transport line distributing the FEL beam to the experimental stations was designed with the whole range of beam parameters in mind. Currently two experimental stations, one for condensed matter and quantum materials research and a second one for atomic, molecular and optical physics, chemical sciences and ultrafast single-particle imaging, are being laid out such that they can profit from the unique soft X-ray pulses produced in the Athos branch in an optimal way.

2.
J Synchrotron Radiat ; 23(Pt 4): 861-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359133

RESUMO

An optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high-power FEL pulses.

3.
Eur Phys J Plus ; 138(2): 126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36779165

RESUMO

At the Paul Scherrer Institute, two electron accelerator-based photon sources are in operation, namely a synchrotron source, the swiss light source (SLS), and an X-ray free-electron laser, SwissFEL. SLS has been operational since 2001 and SwissFEL since 2017. In this time, unique and world-leading scientific programs and methods have developed from the SLS and the SwissFEL in fields as diverse as macromolecular biology, chemical and physical sciences, imaging, and the electronic structure and behaviour of novel and complex materials. To continue the success, a major upgrade of SLS, the SLS2.0 project, is ongoing and at SwissFEL further endstations are under construction.

4.
Nat Commun ; 14(1): 5069, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604879

RESUMO

X-ray free-electron lasers (FELs) are state-of-the-art scientific tools capable to study matter on the scale of atomic processes. Since the initial operation of X-ray FELs more than a decade ago, several facilities with upgraded performance have been put in operation. Here we present the first lasing results of Athos, the soft X-ray FEL beamline of SwissFEL at the Paul Scherrer Institute in Switzerland. Athos features an undulator layout based on short APPLE-X modules providing full polarisation control, interleaved with small magnetic chicanes. This versatile configuration allows for many operational modes, giving control over many FEL properties. We show, for example, a 35% reduction of the required undulator length to achieve FEL saturation with respect to standard undulator configurations. We also demonstrate the generation of more powerful pulses than the ones obtained in typical undulators. Athos represents a fundamental step forward in the design of FEL facilities, creating opportunities in FEL-based sciences.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa