Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177389

RESUMO

Monitoring the metal Additive Manufacturing (AM) process is an important task within the scope of quality assurance. This article presents a method to gain insights into process quality by comparing the actual and target layers. Images of the powder bed were captured and segmented using an Xception-style neural network to predict the powder and part areas. The segmentation result of every layer is compared to the reference layer regarding the area, centroids, and normalized area difference of each part. To evaluate the method, a print job with three parts was chosen where one of them broke off and another one had thermal deformations. The calculated metrics are useful for detecting if a part is damaged or for identifying thermal distortions. The method introduced by this work can be used to monitor the metal AM process for quality assurance. Due to the limited camera resolutions and inconsistent lighting conditions, the approach has some limitations, which are discussed at the end.

2.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015704

RESUMO

Additive manufacturing processes, particularly Laser-Based Powder Bed Fusion of Metals (PBF-LB/M), enable the development of new application possibilities due to their manufacturing-specific freedom of design. These new fields of application require a high degree of component quality, especially in safety-relevant areas. This is currently ensured primarily via a considerable amount of downstream quality control. Suitable process monitoring systems promise to reduce this effort drastically. This paper introduces a novel monitoring method in order to gain process-specific thermal information during the manufacturing process. The Synchronized Path Infrared Thermography (SPIT) method is based on two synchronized galvanometer scanners allowing high-speed and high-resolution observations of the melt pool in the SWIR range. One scanner is used to steer the laser over the building platform, while the second scanner guides the field of view of an IR camera. With this setup, the melting process is observed at different laser powers, scan speeds and at different locations with respect to the laser position, in order to demonstrate the positioning accuracy of the system and to initially gain thermal process data of the melt pool and the heat-affected zone. Therefore, the SPIT system shows a speed independent overall accuracy of ±2 Pixel within the evaluated range. The system further allows detailed thermal observation of the melt pool and the surrounding heat-affected zone.


Assuntos
Lasers , Termografia , Temperatura Alta , Luz , Metais , Termografia/métodos
3.
Sensors (Basel) ; 22(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009589

RESUMO

Nowadays, additive manufacturing processes are becoming more and more appealing due to their production-oriented design guidelines, especially with regard to topology optimisation and minimal downstream production depth in contrast to conventional technologies. However, a scientific path in the areas of quality assurance, material and microstructural properties, intrinsic thermal permeability and dependent stress parameters inhibits enthusiasm for the potential degrees of freedom of the direct metal laser melting process (DMLS). Especially in quality assurance, post-processing destructive measuring methods are still predominantly necessary in order to evaluate the components adequately. The overall objective of these investigations is to gain process knowledge make reliable in situ statements about component quality and material properties based on the process parameters used and emission values measured. The knowledge will then be used to develop non-destructive tools for the quality management of additively manufactured components. To assess the effectiveness of the research design in relation to the objectives for further investigations, this pre-study evaluates the dependencies between the process parameters, process emission during manufacturing and resulting thermal diffusivity and the relative density of samples fabricated by DMLS. Therefore, the approach deals with additively built metal samples made on an EOS M290 apparatus with varying hatch distances while simultaneously detecting the process emission. Afterwards, the relative density of the samples is determined optically, and thermal diffusivity is measured using the laser flash method. As a result of this pre-study, all interactions of the within factors are presented. The process variable hatch distance indicates a strong influence on the resulting material properties, as an increase in the hatch distance from 0.11 mm to 1 mm leads to a drop in relative density of 57.4%. The associated thermal diffusivity also reveals a sharp decrease from 5.3 mm2/s to 1.3 mm2/s with growing hatch distances. The variability of the material properties can also be observed in the measured process emissions. However, as various factors overlap in the thermal radiation signal, no clear assignment is possible within the scope of this work.

4.
Heliyon ; 10(7): e28989, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601634

RESUMO

High-temperature calibration methods in additive manufacturing involve the use of advanced techniques to accurately measure and control the temperature of the build material during the additive manufacturing process. Infrared cameras, blackbody radiation sources and non-linear optimization algorithms are used to correlate the temperature of the material with its emitted thermal radiation. This is essential for ensuring the quality and repeatability of the final product. This paper presents the calibration procedure of an imaging system for in-situ measurement of absolute temperatures and temperature gradients during powder bed fusion of metal with laser beam (PBF-LB/M) in the temperature range of 500 K-1500 K. It describes the design of the optical setup to meet specific requirements in this application area as well as the procedure for accounting the various factors influencing the temperature measurement. These include camera-specific effects such as varying spectral sensitivities of the individual pixels of the sensor as well as influences of the exposure time and the exposed sensor area. Furthermore, influences caused by the complex optical path, such as inhomogeneous transmission properties of the galvanometer scanner as well as angle-dependent transmission properties of the f-theta lens were considered. A two-step fitting algorithm based on Planck's law of radiation was applied to best represent the correlation. With the presented procedure the calibrated thermography system provides the ability to measure absolute temperatures under real process conditions with high accuracy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa