Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
New Phytol ; 242(6): 2775-2786, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567688

RESUMO

Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c. 1.5 million fungal sporocarp and c. 30 million tree records from publicly accessible databases, we mapped and compared decay mode and tree type (conifer vs angiosperm) distributions. Additionally, we mined fungal record metadata to assess substrate specificity per decay mode. The global average for BR fungi proportion (BR/(BR + WR records)) was 13% and geographic variation was positively correlated (R2 = 0.45) with conifer trees proportion (conifer/(conifer + angiosperm records)). Most BR species (61%) were conifer, rather than angiosperm (22%), specialists. The reverse was true for WR (conifer: 19%; angiosperm: 62%). Global BR proportion patterns were predicted with greater accuracy using the relative distributions of individual tree species (R2 = 0.82), rather than tree type. Fungal decay mode distributions can be explained by tree type and, more importantly, tree species distributions, which our data suggest is due to strong substrate specificities.


Assuntos
Ecossistema , Traqueófitas , Traqueófitas/microbiologia , Fungos/fisiologia , Madeira/microbiologia , Especificidade da Espécie , Lignina/metabolismo , Geografia , Árvores/microbiologia
2.
Fungal Genet Biol ; 159: 103673, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150839

RESUMO

Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments. This implies the crucial role of concise gene regulation to brown rot efficacy, but the underlying regulatory mechanisms remain uncharacterized. Here, using the combined transcriptomic and enzyme analyses we investigated the roles of carbon catabolites in controlling gene expression in model brown rot fungus Rhodonia placenta. We identified co-regulated gene regulons as shared transcriptional responses to no-carbon controls, glucose, cellobiose, or aspen wood (Populus sp.). We found that cellobiose, a common inducing catabolite for fungi, induced expression of main chain-cleaving cellulases in GH5 and GH12 families (cellobiose vs. no-carbon > 4-fold, Padj < 0.05), whereas complex aspen was a universal inducer for Carbohydrate Active Enzymes (CAZymes) expression. Importantly, we observed the attenuated glucose-mediated repression effects on cellulases expression, but not on hemicellulases and lignin oxidoreductases, suggesting fungi might have adapted diverged regulatory routes to boost cellulase production for the fast carbohydrate release. Using carbon regulons, we further predicted the cis- and trans-regulatory elements and assembled a network model of the distinctive regulatory machinery of brown rot. These results offer mechanistic insights into the energy efficiency traits of a common group of decomposer fungi with enormous influence on the carbon cycle.


Assuntos
Celulase , Polyporales , Carbono , Celobiose , Glucose , Humanos , Madeira
3.
Appl Environ Microbiol ; 88(8): e0018822, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348388

RESUMO

Brown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction. To capture this early gene regulation event, here, we integrated fine-scale cryosectioning with whole-transcriptome sequencing to dissect gene expression at the single-hyphal-cell scale (tens of micrometers). This improved the spatial resolution 50-fold, relative to previous work, and we were able to capture the activity of the first 100 µm of hyphal front growth by Rhodonia placenta in aspen wood. This early decay period was dominated by delayed gene expression patterns as the fungus ramped up its mechanism. These delayed DEGs included many genes implicated in ROS pathways (lignocellulose oxidation [LOX]) that were previously and incorrectly assumed to be constitutively expressed. These delayed DEGs, which include those with and without predicted functions, also create a focused subset of target genes for functional genomics. However, this delayed pattern was not universal, with a few genes being upregulated immediately at the hyphal front. Most notably, this included a gene commonly implicated in hydroquinone and iron redox cycling: benzoquinone reductase. IMPORTANCE Earth's aboveground terrestrial biomass is primarily wood, and fungi dominate wood decomposition. Here, we studied these fungal pathways in a common "brown rot"-type fungus, Rhodonia placenta, that selectively extracts sugars from carbohydrates embedded within wood lignin. Using a space-for-time design to map fungal gene expression at the extreme hyphal front in wood, we made two discoveries. First, we found that many genes long assumed to be "on" (constitutively expressed) from the very beginning of decay were instead "off" before being upregulated, when mapped (via transcriptome sequencing [RNA-seq]) at a high resolution. Second, we found that the gene encoding benzoquinone reductase was "on" in incipient decay and quickly downregulated, implying a key role in "kick-starting" brown rot.


Assuntos
Polyporales , Madeira , Benzoquinonas/metabolismo , Expressão Gênica , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Madeira/microbiologia
4.
New Phytol ; 236(3): 1154-1167, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35898177

RESUMO

Wildfires drastically impact the soil environment, altering the soil organic matter, forming pyrolyzed compounds, and markedly reducing the diversity of microorganisms. Pyrophilous fungi, especially the species from the orders Pezizales and Agaricales, are fire-responsive fungal colonizers of post-fire soil that have historically been found fruiting on burned soil and thus may encode mechanisms of processing these compounds in their genomes. Pyrophilous fungi are diverse. In this work, we explored this diversity and sequenced six new genomes of pyrophilous Pezizales fungi isolated after the 2013 Rim Fire near Yosemite Park in California, USA: Pyronema domesticum, Pyronema omphalodes, Tricharina praecox, Geopyxis carbonaria, Morchella snyderi, and Peziza echinospora. A comparative genomics analysis revealed the enrichment of gene families involved in responses to stress and the degradation of pyrolyzed organic matter. In addition, we found that both protein sequence lengths and G + C content in the third base of codons (GC3) in pyrophilous fungi fall between those in mesophilic/nonpyrophilous and thermophilic fungi. A comparative transcriptome analysis of P. domesticum under two conditions - growing on charcoal, and during sexual development - identified modules of genes that are co-expressed in the charcoal and light-induced sexual development conditions. In addition, environmental sensors such as transcription factors STE12, LreA, LreB, VosA, and EsdC were upregulated in the charcoal condition. Taken together, these results highlight genomic adaptations of pyrophilous fungi and indicate a potential connection between charcoal tolerance and fruiting body formation in P. domesticum.


Assuntos
Carvão Vegetal , Genômica , Fungos , Desenvolvimento Sexual , Solo , Fatores de Transcrição
5.
Appl Environ Microbiol ; 87(16): e0032921, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313495

RESUMO

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species­aspen, pine, and spruce­under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.

6.
Proc Natl Acad Sci U S A ; 113(39): 10968-73, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621450

RESUMO

Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.


Assuntos
Coriolaceae/genética , Regulação Fúngica da Expressão Gênica , Madeira/microbiologia , Análise por Conglomerados , Coriolaceae/enzimologia , Coriolaceae/crescimento & desenvolvimento , Genes Fúngicos , Lignina , Micélio/fisiologia , Oxirredução , Transcrição Gênica
7.
Fungal Genet Biol ; 112: 64-70, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27543342

RESUMO

Wood-degrading fungi that selectively remove carbohydrates (brown rot) combine Fenton-based oxidation and enzymatic hydrolysis to degrade wood. These two steps are incompatible in close proximity. To explain this, brown rot fungi may stagger oxidative reactions ahead of hydrolysis, but the scale and environmental controls for such a mechanism have not been resolved in solid wood. Here, we focused on one reaction control parameter, oxalate. In coordination with Fe3+-reducing compounds (e.g., 2,5-dimethoxyhydroquinone), oxalate can either promote Fenton chemistry by mobilizing Fe3+ as mono-oxalates (facilitative) or inhibit Fenton chemistry (protective) by restricting reducibility and the formation of Fenton's reagent as Fe3+/Fe2-(oxalate)2,3. Here, we sectioned wood wafers colonized directionally by Postia placenta and Gloeophyllum trabeum to map end-to-end the expression of oxalate synthesis genes and to overlay enzyme activities, metabolites, and wood modifications. Near advancing hyphal fronts, oxaloacetase expression was up upregulated for both fungi, while regulation patterns of paralogous of isocitrate lyases and glyoxylate dehydrogenases varied, suggesting different physiological roles. Oxalate decarboxylase (ODC) expression in G. trabeum was induced in more decayed wood behind the hyphal front, but was constitutively expressed in all P. placenta sections. Relative ODC activities increased and oxalate levels stabilized in more decayed wood behind the hyphal front. Endoglucanase (EG) activity, on the other hand, peaked for both fungi in later decay stages. These oxalate optimization patterns are in line with previous whole-block 'spiking' experiments tracking oxalate, but we provide here information on its genetic controls across a spatial gradient. As a complement, we also demonstrate in vitro the plausibility of a protective role for oxalate, to emphasize that these fungi might be optimizing oxalate at a given level to maximize Fenton reactions but to minimize oxidative damage.


Assuntos
Basidiomycota/metabolismo , Metabolismo dos Carboidratos , Celulase/metabolismo , Ferro/metabolismo , Oxalatos/metabolismo , Madeira/microbiologia , Basidiomycota/genética , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Oxirredução , Fatores de Tempo
8.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30194102

RESUMO

Brown rot wood-degrading fungi deploy reactive oxygen species (ROS) to loosen plant cell walls and enable selective polysaccharide extraction. These ROS, including Fenton-generated hydroxyl radicals (HO˙), react with little specificity and risk damaging hyphae and secreted enzymes. Recently, it was shown that brown rot fungi reduce this risk, in part, by differentially expressing genes involved in HO˙ generation ahead of those coding carbohydrate-active enzymes (CAZYs). However, there are notable exceptions to this pattern, and we hypothesized that brown rot fungi would require additional extracellular mechanisms to limit ROS damage. To assess this, we grew Postia placenta directionally on wood wafers to spatially segregate early from later decay stages. Extracellular HO˙ production (avoidance) and quenching (suppression) capacities among the stages were analyzed, along with the ability of secreted CAZYs to maintain activity postoxidation (tolerance). First, we found that H2O2 and Fe2+ concentrations in the extracellular environment were conducive to HO˙ production in early (H2O2:Fe2+ ratio 2:1) but not later (ratio 1:131) stages of decay. Second, we found that ABTS radical cation quenching (antioxidant capacity) was higher in later decay stages, coincident with higher fungal phenolic concentrations. Third, by surveying enzyme activities before/after exposure to Fenton-generated HO˙, we found that CAZYs secreted early, amid HO˙, were more tolerant of oxidative stress than those expressed later and were more tolerant than homologs in the model CAZY producer Trichoderma reesei Collectively, this indicates that P. placenta uses avoidance, suppression, and tolerance mechanisms, extracellularly, to complement intracellular differential expression, enabling this brown rot fungus to use ROS to degrade wood.IMPORTANCE Wood is one of the largest pools of carbon on Earth, and its decomposition is dominated in most systems by fungi. Wood-degrading fungi specialize in extracting sugars bound within lignin, either by removing lignin first (white rot) or by using Fenton-generated reactive oxygen species (ROS) to "loosen" wood cell walls, enabling selective sugar extraction (brown rot). Although white rot lignin-degrading pathways are well characterized, there are many uncertainties in brown rot fungal mechanisms. Our study addressed a key uncertainty in how brown rot fungi deploy ROS without damaging themselves or the enzymes they secrete. In addition to revealing differentially expressed genes to promote ROS generation only in early decay, our study revealed three spatial control mechanisms to avoid/tolerate ROS: (i) constraining Fenton reactant concentrations (H2O2, Fe2+), (ii) quenching ROS via antioxidants, and (iii) secreting ROS-tolerant enzymes. These results not only offer insight into natural decomposition pathways but also generate targets for biotechnological development.


Assuntos
Radical Hidroxila/metabolismo , Polyporales/metabolismo , Madeira/microbiologia , Antioxidantes/metabolismo , Parede Celular/metabolismo , Parede Celular/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Polyporales/enzimologia , Polyporales/genética , Polyporales/crescimento & desenvolvimento , Madeira/metabolismo
9.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884760

RESUMO

Wood-degrading fungi use a sequence of oxidative and hydrolytic mechanisms to loosen lignocellulose and then release and metabolize embedded sugars. These temporal sequences have recently been mapped at high resolution using directional growth on wood wafers, revealing previously obscured dynamics as fungi progressively colonize wood. Here, we applied secretomics in the same wafer design to track temporal trends on aspen decayed by fungi with distinct nutritional modes: two brown rot (BR) fungi (Postia placenta and Gloeophyllum trabeum) and two white rot (WR) fungi (Stereum hirsutum and Trametes versicolor). We matched secretomic data from three zones of decay (early, middle, and late) with enzyme activities in these zones, and we included measures of total protein and ergosterol as measures of fungal biomass. In line with previous transcriptomics data, the fungi tested showed an initial investment in pectinases and a delayed investment in glycoside hydrolases (GHs). Brown rot fungi also staggered the abundance of some oxidoreductases ahead of GHs to produce a familiar two-step mechanism. White rot fungi, however, showed late-stage investment in pectinases as well, unlike brown rot fungi. Ligninolytic enzyme activities and abundances were also different between the two white rot fungi. Specifically, S. hirsutum ligninolytic activity was delayed, which was explained almost entirely by the activity and abundance of five atypical manganese peroxidases, unlike more varied peroxidases and laccases in T. versicolor These secretomic analyses support brown rot patterns generated via transcriptomics, they reveal distinct patterns among and within rot types, and they link spectral counts with activities to help functionalize these multistrain secretomic data.IMPORTANCE Wood decay, driven primarily by wood-degrading basidiomycetes, is an essential component of global carbon cycles, and decay mechanisms are essential for understanding forest ecosystem function. These fungi efficiently consolidate pretreatment and saccharification of wood under mild conditions, making them promising templates for low-cost lignocellulose conversion. Species are categorized as ligninolytic white rots and polysaccharide-selective brown rots, with considerable undescribed variability in decay mechanism that may manifest in the sequential variation in protein secretion over the progression of decay. Here we resolved spatially a temporal progression of decay on intact wood wafers and compared secretome dynamics in two white and two brown rot fungi. We identified several universal mechanistic components among decay types, including early pectinolytic "pretreatment" and later-stage glycoside hydrolase-mediated saccharification. Interspecific comparisons also identified considerable mechanistic diversity within rot types, indicating that there are multiple avenues to facilitate white and brown rots.


Assuntos
Agaricales/enzimologia , Madeira/metabolismo , Madeira/microbiologia , Biomassa , Glicosídeo Hidrolases , Hidrólise , Lignina/metabolismo , Oxirredução , Filogenia
10.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884757

RESUMO

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.


Assuntos
Coriolaceae/genética , Proteínas Fúngicas/genética , Edição de RNA , Madeira/microbiologia , Coriolaceae/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Lacase/genética , Lignina/metabolismo , Pinus/microbiologia , Transcriptoma , Madeira/metabolismo
11.
Appl Microbiol Biotechnol ; 102(17): 7365-7375, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29982927

RESUMO

Methane (CH4) is a powerful greenhouse gas emitted from natural and anthropogenic sources, and its emission rates vary among sources as a function of environment, microbial respiration, and feedbacks. Biological CH4 flux from natural and engineered systems is typically represented simply as generation of CH4 by methanogens minus oxidation by methanotrophs. In many cases, however, CH4 flux is modulated by transport and solubility mechanisms that occur before oxidation or other chemical transformation. The ability of fungi to directly oxidize CH4 remains unclear; however, their hydrophobic growths extending above microbial biofilms can improve surface area and sorption of hydrophobic gases. This can improve overall oxidation rates in a biofilm simply by improving phase transfer dynamics and bioavailability to bacterial or archaeal associates. This indirect facilitation is not necessarily intuitive, but there has been a recent emerging interest in harnessing these fungal abilities in engineering bioreactors and filtration systems designed to capture and oxidize CH4. These dynamics may be playing a similar facilitative role in natural CH4 oxidation, where fungi may indirectly influence carbon mineralization and methanogen/methanotroph communities, and/or directly oxidize and dissolve gaseous CH4. This review highlights these unique roles for fungi in determining net CH4 oxidation rates, and it summarizes the potential to harness fungi to mitigate CH4 emissions.


Assuntos
Fungos/metabolismo , Metano/metabolismo , Reatores Biológicos , Meio Ambiente , Oxirredução
12.
Fungal Genet Biol ; 106: 1-8, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666924

RESUMO

Brown rot fungi initiate wood decay using oxidative pretreatments to improve access for cellulolytic enzymes. These pretreatments are incompatible with enzymes, and we recently showed that Postia placenta overcomes this issue by delaying glycoside hydrolase (GH) gene upregulation briefly (<48h) until expression of oxidoreductases (ORs) is repressed. This implies an inducible cellulase system rather than a constitutive system, as often reported, and it remains unclear what cues this transition. To address this, we grew P. placenta along wood wafers and spatially mapped expression (via quantitative PCR) of twelve ORs and GHs targeted using functional genomics analyses. By layering expression patterns over solubilized sugar data (via HPLC) from wood, we observed solubilization of wood glucose, cellobiose, mannose, and xylose coincident with the OR-GH transition. We then tested effects of these soluble sugars, plus polymeric carbon sources (spruce powder, cellulose), on P. placenta gene expression in liquid cultures. Expression of ORs was strictly (aox1, cro5) or progressively repressed over time (qrd1, lcc1) by all soluble sugars, including cellobiose, but not by polymeric sources. Simple sugars repressed hemicellulase gene expression over time, but these sugars did not repress cellulases. Cellulase genes were upregulated, however, along with hemicellulases in the presence of soluble cellobiose and in the presence of polymeric carbon sources, relative to starvation (carbon-free). This verifies an inducible cellulase system in P. placenta that lacks carbon catabolite repression (CCR), and it suggests that brown rot fungi use soluble sugars, particularly cellobiose, to cue a critical oxidative-hydrolytic transition.


Assuntos
Celulases/genética , Celulose/metabolismo , Coriolaceae/enzimologia , Madeira/microbiologia , Celulases/metabolismo , Coriolaceae/genética , Coriolaceae/crescimento & desenvolvimento , Regulação para Baixo , Expressão Gênica , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Monossacarídeos/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Regulação para Cima
13.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130302

RESUMO

Brown rot fungi are wood-degrading fungi that employ both oxidative and hydrolytic mechanisms to degrade wood. Hydroxyl radicals that facilitate the oxidative component are powerful nonselective oxidants and are incompatible with hydrolytic enzymes unless they are spatially segregated in wood. Differential gene expression has been implicated in the segregation of these reactions in Postia placenta, but it is unclear if this two-step mechanism varies in other brown rot fungi with different traits and life history strategies that occupy different niches in nature. We employed proteomics to analyze a progression of wood decay on thin wafers, using brown rot fungi with significant taxonomic and niche distances: Serpula lacrymans (Boletales; "dry rot" lumber decay) and Gloeophyllum trabeum (order Gloeophyllales; slash, downed wood). Both fungi produced greater oxidoreductase diversity upon wood colonization and greater glycoside hydrolase activity later, consistent with a two-step mechanism. The two fungi invested very differently, however, in terms of growth (infrastructure) versus protein secretion (resource capture), with the ergosterol/extracted protein ratio being 7-fold higher with S. lacrymans than with G. trabeum In line with the native substrate associations of these fungi, hemicellulase-specific activities were dominated by mannanase in S. lacrymans and by xylanase in G. trabeum Consistent with previous observations, S. lacrymans did not produce glycoside hydrolase 6 (GH6) cellobiohydrolases (CBHs) in this study, despite taxonomically belonging to the order Boletales, which is distinguished among brown rot fungi by having CBH genes. This work suggests that distantly related brown rot fungi employ staggered mechanisms to degrade wood, but the underlying strategies vary among taxa.IMPORTANCE Wood-degrading fungi are important in forest nutrient cycling and offer promise in biotechnological applications. Brown rot fungi are unique among these fungi in that they use a nonenzymatic oxidative pretreatment before enzymatic carbohydrate hydrolysis, enabling selective removal of carbohydrates from lignin. This capacity has independently evolved multiple times, but it is unclear if different mechanisms underpin similar outcomes. Here, we grew fungi directionally on wood wafers and we found similar two-step mechanisms in taxonomically divergent brown rot fungi. The results, however, revealed strikingly different growth strategies, with S. lacrymans investing more in biomass production than secretion of proteins and G. trabeum showing the opposite pattern, with a high diversity of uncharacterized proteins. The "simplified" S. lacrymans secretomic system could help narrow gene targets central to oxidative brown rot pretreatments, and a comparison of its distinctions with G. trabeum and other brown rot fungi (e.g., Postia placenta) might offer similar traction in noncatabolic genes.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Coriolaceae/crescimento & desenvolvimento , Coriolaceae/metabolismo , Proteínas Fúngicas/metabolismo , Madeira/microbiologia , Basidiomycota/classificação , Basidiomycota/genética , Biomassa , Celulose 1,4-beta-Celobiosidase/metabolismo , Coriolaceae/classificação , Coriolaceae/genética , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/metabolismo , Hidrólise , Lignina/metabolismo , Oxirredução , Proteômica , Madeira/metabolismo
15.
Oecologia ; 182(1): 287-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27236291

RESUMO

We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.


Assuntos
Florestas , Clima Tropical , Folhas de Planta , Solo/química , Microbiologia do Solo , Árvores/microbiologia
16.
Appl Microbiol Biotechnol ; 100(6): 2843-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26590583

RESUMO

Biofilters, bioreactors used for pollution control, can effectively treat a variety of odorous and hazardous emissions, but uncertain medium longevities and associated costs limit biofilter adoption. To improve medium-life estimations for biofilter end-users, litter bags were used to compare decay rates of common biofilter medium types and test the effects of nitrogen (N) enrichment and livestock production emissions on medium decay in a full-scale biofilter over a 27-month period. Generally, "by-product" media (mulch, corn cobs) decayed faster than hardwood media, with decay of softwood media the slowest. Analysis showed nutrient content was the best predictor of early-stage decay, while carbon fractions and nutrient content best predicted medium longevity. N amendments and N-rich barn emissions were found to hasten medium decay. By identifying decay rates and rate predictors specific for biofilter media, we provide biofilter engineers and farmers with a quantitative way to improve medium selection based on the trade-offs between medium cost and replacement frequency.


Assuntos
Poluentes Atmosféricos/metabolismo , Filtração/métodos , Compostos Orgânicos Voláteis/metabolismo , Poluentes da Água/metabolismo , Filtros de Ar , Biotransformação , Fatores de Tempo , Purificação da Água
17.
Environ Microbiol ; 17(12): 4885-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25181619

RESUMO

Among wood-degrading fungi, lineages holding taxa that selectively metabolize carbohydrates without significant lignin removal (brown rot) are polyphyletic, having evolved multiple times from lignin-removing white rot fungi. Given the qualitative nature of the 'brown rot' classifier, we aimed to quantify and compare the temporal sequence of carbohydrate removal among brown rot clades. Lignocellulose deconstruction was compared among fungi using distinct plant substrates (angiosperm, conifer, grass). Specifically, aspen, pine and corn stalk were harvested over a 16-week time series from microcosms containing Gloeophyllum trabeum, Fomitopsis pinicola, Ossicaulis lignatilis, Fistulina hepatica, Serpula lacrymans, Wolfiporia cocos or Dacryopinax sp. After quantifying plant mass loss, a thorough compositional analysis was complemented by a saccharification test to determine wood cell wall accessibility. Mass loss and accessibility varied depending on fungal decomposer and substrate, and trajectories of loss for hemicellulosic components and cellulose differed among plant tissue types. At any given stage of decomposition, however, lignocellulose accessibility and the fraction remaining of carbohydrates and lignin within a plant tissue type were generally the same, regardless of fungal isolate. This suggests that the sequence of plant component removal at this typical scale of characterization is shared among these brown rot lineages, despite their diverse genomes and secretomes.


Assuntos
Basidiomycota/metabolismo , Lignina/metabolismo , Pinus/microbiologia , Poaceae/microbiologia , Madeira/metabolismo , Zea mays/microbiologia , Metabolismo dos Carboidratos/fisiologia , Carboidratos , Evolução Molecular , Lignina/química , Madeira/microbiologia
18.
Microb Ecol ; 69(4): 758-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25750000

RESUMO

The relative amounts of hyphal inoculum in forest soils may determine the capacity for fungi to compete with and replace early colonizers of wood in ground contact. Our aim in this study was to test the flexibility of priority effects (colonization timing) by varying the timing of inoculum introduction (i.e., precolonization) and amount of inoculum (i.e., inoculum potential). We controlled these variables in soil-block microcosms using fungi with known competitive outcomes in similar conditions, tracking isolate-specific fungal biomass, and residue physiochemistry over time. In the precolonization trial (experiment I), a brown rot fungus Gloeophyllum trabeum was given 1, 3, or 5 weeks to precolonize wood blocks (oak, birch, pine, and spruce) prior the introduction of a white rot fungus, Irpex lacteus, a more aggressive colonizer in this set-up. In the inoculum potential trial (experiment II), the fungi were inoculated simultaneously, but with eightfold higher brown rot inoculum than that of experiment I. As expected, longer precolonization duration increased the chance for the less-competitive brown rot fungus to outcompete its white rot opponent. Higher brown rot fungal inoculum outside of the wood matrix also resulted in competitive success for the brown rot isolate in most cases. These temporal shifts in fungal dominance were detectable in a 'community snapshot' as isolate-specific quantitative PCR, but also as functionally-relevant consequences of wood rot type, including carbohydrate depolymerization and pH. These results from a controlled system reinforce fungal-fungal interaction and suggest that relative inoculum availability beyond the wood matrix (i.e., soils) might regulate the duration of priority effects and shift the functional trajectory of wood decomposition.


Assuntos
Basidiomycota/fisiologia , Madeira/microbiologia , Basidiomycota/crescimento & desenvolvimento , Hifas/fisiologia , Polyporales/crescimento & desenvolvimento , Polyporales/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
19.
Appl Microbiol Biotechnol ; 97(19): 8831-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917637

RESUMO

Interest in the mechanisms of wood-degrading fungi has grown in tandem with lignocellulose bioconversion efforts, yet many potential biomass feedstocks are non-woody. Using corn stover (Zea mays) as a substrate, we tracked degradative capacities among brown rot fungi from the Antrodia clade, including Postia placenta, the first brown rot fungus to have its genome sequenced. Decay dynamics were compared against Gloeophyllum trabeum from the Gloeophyllum clade. Weight loss induced by P. placenta (6.2 %) and five other Antrodia clade isolates (average 7.4 %) on corn stalk after 12 weeks demonstrated inefficiency among these fungi, relative to decay induced by G. trabeum (44.4 %). Using aspen (Populus sp.) as a woody substrate resulted in, on average, a fourfold increase in weight loss induced by Antrodia clade fungi, while G. trabeum results matched those on stover. The sequence and trajectories of chemical constituent losses differed as a function of substrate but not fungal clade. Instead, chemical data suggest that characters unique to stover limit decay by the Antrodia clade, rather than disparities in growth rate or extractives toxicity. High p-coumaryl lignin content, lacking the methoxy groups characteristically cleaved during brown rot, is among potential rate-distinguishing characters in grasses. This ineptitude among Antrodia clade fungi on grasses was supported by meta-analysis of other unrelated studies using grass substrates. Concerning application, results expose a problem if adopting the strategy of the model decay fungus P. placenta to treat corn stover, a widely available plant feedstock. Overall, the results insinuate phylogenetically distinct modes of brown rot and demonstrate the benefit of using non-woody substrates to probe wood degradation mechanisms.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Coriolaceae/crescimento & desenvolvimento , Coriolaceae/metabolismo , Poaceae/metabolismo , Populus/metabolismo , Zea mays/metabolismo , Meios de Cultura/química , Micologia/métodos , Poaceae/microbiologia , Populus/microbiologia , Zea mays/microbiologia
20.
Microbiol Spectr ; 11(1): e0424622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651769

RESUMO

Brown rot fungi are primary decomposers of wood and litter in northern forests. Relative to other microbes, these fungi have evolved distinct mechanisms that rapidly depolymerize and metabolize cellulose and hemicellulose without digesting the more recalcitrant lignin. Its efficient degradative system has therefore attracted considerable attention for the development of sustainable biomass conversion technologies. However, there has been a significant lack of genetic tools in brown rot species by which to manipulate genes for both mechanistic studies and engineering applications. To advance brown rot genetic studies, we provided a gene-reporting system that can facilitate genetic manipulations in a model fungus Gloeophyllum trabeum. We first optimized a transformation procedure in G. trabeum, and then transformed the fungus into a constitutive laccase producer with a well-studied white rot laccases gene (from Trametes versicolor). With this, we built a gene reporting system based on laccase gene's expression and its rapid assay using an 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) indicator dye. The laccase reporter system was validated robust enough to allow us to test the effects of donor DNA's formats, protoplast viability, and gene regulatory elements on transformation efficiencies. Going forward, we anticipate the toolset provided in this work would expedite phenotyping studies and genetic engineering of brown rot species. IMPORTANCE One of the most ubiquitous types of decomposers in nature, brown rot fungi, has lacked robust genetic tools by which to manipulate genes and understand its biology. Brown rot fungi are primary decomposers in northern forests helping recycle the encased carbons in trees back to ecosystem. Relative to other microbes, these fungi employ distinctive mechanisms to disrupt and consume the lignified polysaccharides in wood. Its decay mechanism allows fast, selective carbohydrate catabolization, but without digesting lignin-a barren component that produces least energy trade back for fungal metabolisms. Thus, its efficient degradative system provides a great platform for developing sustainable biotechnologies for biomass conversions. However, progress has been hampered by the lack genetic tools facilitating mechanistic studies and engineering applications. Here, the laccase reporter system provides a genetic toolset for genetic manipulations in brown rot species, which we expect would advance relevant genetic studies for discovering and harnessing the unique fungal degradative mechanisms.


Assuntos
Basidiomycota , Lacase , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Madeira/metabolismo , Madeira/microbiologia , Trametes/metabolismo , Ecossistema , Basidiomycota/genética , Basidiomycota/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa