Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artif Organs ; 43(2): 159-166, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30084492

RESUMO

The most common technical complication during ECMO is clot formation. A large clot inside a membrane oxygenator reduces effective membrane surface area and therefore gas transfer capabilities, and restricts blood flow through the device, resulting in an increased membrane oxygenator pressure drop (dpMO). The reasons for thrombotic events are manifold and highly patient specific. Thrombus formation inside the oxygenator during ECMO is usually unpredictable and remains an unsolved problem. Clot sizes and positions are well documented in literature for the Maquet Quadrox-i Adult oxygenator based on CT data extracted from devices after patient treatment. Based on this data, the present study was designed to investigate the effects of large clots on purely technical parameters, for example, dpMO and gas transfer. Therefore, medical grade silicone was injected into the fiber bundle of the devices to replicate large clot positions and sizes. A total of six devices were tested in vitro with silicone clot volumes of 0, 30, 40, 50, 65, and 85 mL in accordance with ISO 7199. Gas transfer was measured by sampling blood pre and post device, as well as by sampling the exhaust gas at the devices' outlet at blood flow rates of 0.5, 2.5, and 5.0 L/min. Pre and post device pressure was monitored to calculate the dpMO at the different blood flow rates. The dpMO was found to be a reliable parameter to indicate a large clot only in already advanced "clotting stages." The CO2 concentration in the exhaust gas, however, was found to be sensitive to even small clot sizes and at low blood flows. Exhaust gas CO2 concentration can be monitored continuously and without any risks for the patient during ECMO therapy to provide additional information on the endurance of the oxygenator. This may help detect a clot formation and growth inside a membrane oxygenator during ECMO even if the increase in dpMO remains moderate.


Assuntos
Oxigenação por Membrana Extracorpórea/instrumentação , Oxigenadores de Membrana/efeitos adversos , Trombose/diagnóstico , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Desenho de Equipamento , Hemodinâmica , Humanos , Índice de Gravidade de Doença , Trombose/etiologia
2.
Artif Organs ; 41(6): 529-538, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27925231

RESUMO

Flow distribution is key in artificial lungs, as it directly influences gas exchange performance as well as clot forming and blood damaging potential. The current state of computational fluid dynamics (CFD) in artificial lungs can only give insight on a macroscopic level due to model simplification applied to the fiber bundle. Based on our recent work on wound fiber bundles, we applied particle image velocimetry (PIV) to the model of an artificial lung prototype intended for neonatal use to visualize flow distribution in a stacked fiber bundle configuration to (i) evaluate the feasibility of PIV for artificial lungs, (ii) validate CFD in the fiber bundle of artificial lungs, and (iii) give a suggestion how to incorporate microscopic aspects into mainly macroscopic CFD studies. To this end, we built a fully transparent model of an artificial lung prototype. To increase spatial resolution, we scaled up the model by a factor of 5.8 compared with the original size. Similitude theory was applied to ensure comparability of the flow distribution between the device of original size and the scaled-up model. We focused our flow investigation on an area (20 × 70 × 43 mm) in a corner of the model with a Stereo-PIV setup. PIV data was compared to CFD data of the original sized artificial lung. From experimental PIV data, we were able to show local flow acceleration and declaration in the fiber bundle and meandering flow around individual fibers, which is not possible using state-of-the-art macroscopic CFD simulations. Our findings are applicable to clinically used artificial lungs with a similar stacked fiber arrangement (e.g., Novalung iLa and Maquet QUADROX-I). With respect to some limitations, we found PIV to be a feasible experimental flow visualization technique to investigate blood-sided flow in the stacked fiber arrangement of artificial lungs.


Assuntos
Velocidade do Fluxo Sanguíneo , Hidrodinâmica , Pulmão/irrigação sanguínea , Oxigenadores de Membrana , Reologia/métodos , Ventiladores Mecânicos , Simulação por Computador , Desenho de Equipamento , Hemodinâmica , Humanos , Modelos Cardiovasculares
3.
Artif Organs ; 38(11): 972-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24533575

RESUMO

The jet of the outflow cannula is a potential risk for patients undergoing cardiopulmonary bypass (CPB), because increased jet velocities lead to altered flow conditions and might furthermore mobilize atherosclerotic plaques from calcified aortas. The cannula jet is therefore among the main reasons for cerebral hypoxia and stroke in CPB patients. In the past, we developed a validated computational fluid dynamics (CFD) model to analyze flow conditions during CPB as dependent on cannulation and support modalities. This model is now applied to develop a novel CPB outflow cannula to reduce the jet effect and increase cerebral blood flow. The Multi-Module Cannula (MMC) is based on a generic elbow cannula that was iteratively improved. It features an inner wall to smoothly guide the blood as well as an elliptically shaped outlet diffuser. During standard CPB conditions of 5 L/min, the pressure drop over the MMC is 61 mm Hg, compared with 68 mm Hg with a standard cannula. The maximum velocities are decreased from 3.7 m/s to 3.3 m/s. In the cannula jet of the MMC, the velocities are reduced further, down to 1.6 m/s. The cerebral blood flow is typically reduced during CPB. Using the MMC, however, it reaches almost physiological values at 715 mL/min. These results suggest that the MMC outperforms standard CPB cannulas. Further design improvements and improved insertion techniques are under consideration.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Ponte Cardiopulmonar/instrumentação , Circulação Cerebrovascular/fisiologia , Desenho de Equipamento , Hemodinâmica , Humanos , Hidrodinâmica , Modelos Cardiovasculares
4.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421033

RESUMO

The overall survival rate of extracorporeal life support (ECLS) remains at 60%. Research and development has been slow, in part due to the lack of sophisticated experimental models. This publication introduces a dedicated rodent oxygenator ("RatOx") and presents preliminary in vitro classification tests. The RatOx has an adaptable fiber module size for various rodent models. Gas transfer performances over the fiber module for different blood flows and fiber module sizes were tested according to DIN EN ISO 7199. At the maximum possible amount of effective fiber surface area and a blood flow of 100 mL/min, the oxygenator performance was tested to a maximum of 6.27 mL O2/min and 8.2 mL CO2/min, respectively. The priming volume for the largest fiber module is 5.4 mL, while the smallest possible configuration with a single fiber mat layer has a priming volume of 1.1 mL. The novel RatOx ECLS system has been evaluated in vitro and has demonstrated a high degree of compliance with all pre-defined functional criteria for rodent-sized animal models. We intend for the RatOx to become a standard testing platform for scientific studies on ECLS therapy and technology.

5.
Membranes (Basel) ; 12(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35207055

RESUMO

Extracorporeal membrane oxygenation (ECMO) is an established rescue therapy for patients with chronic respiratory failure waiting for lung transplantation (LTx). The therapy inherent immobilization may result in fatigue, consecutive deteriorated prognosis, and even lost eligibility for transplantation. We conducted a feasibility study on a novel system designed for the deployment of a portable ECMO device, enabling the physical exercise of awake patients prior to LTx. The system comprises a novel oxygenator with a directly connected blood pump, a double-lumen cannula, gas blender and supply, as well as control and energy management. In vitro experiments included tests regarding performance, efficiency, and blood damage. A reduced system was tested in vivo for feasibility using a novel large animal model. Six anesthetized pigs were first positioned in supine position, followed by a 45° angle, simulating an upright position of the patients. We monitored performance and vital parameters. All in vitro experiments showed good performance for the respective subsystems and the integrated system. The acute in vivo trials of 8 h duration confirmed the results. The novel portable ECMO-system enables adequate oxygenation and decarboxylation sufficient for, e.g., the physical exercise of designated LTx-recipients. These results are promising and suggest further preclinical studies on safety and efficacy to facilitate translation into clinical application.

6.
Membranes (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35054581

RESUMO

Carbon monoxide (CO) poisoning is the leading cause of poisoning-related deaths globally. The currently available therapy options are normobaric oxygen (NBO) and hyperbaric oxygen (HBO). While NBO lacks in efficacy, HBO is not available in all areas and countries. We present a novel method, extracorporeal hyperoxygenation therapy (EHT), for the treatment of CO poisoning that eliminates the CO by treating blood extracorporeally at elevated oxygen partial pressure. In this study, we proof the principle of the method in vitro using procine blood: Firstly, we investigated the difference in the CO elimination of a hollow fibre membrane oxygenator and a specifically designed batch oxygenator based on the bubble oxygenator principle at elevated pressures (1, 3 bar). Secondly, the batch oxygenator was redesigned and tested for a broader range of pressures (1, 3, 5, 7 bar) and temperatures (23, 30, 37 °C). So far, the shortest measured carboxyhemoglobin half-life in the blood was 21.32 min. In conclusion, EHT has the potential to provide an easily available and effective method for the treatment of CO poisoning.

7.
Artif Organs ; 34(11): 930-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21092036

RESUMO

Current goals in the development of oxygenators are to reduce extrinsic surface contact area, thrombus formation, hemolysis, and priming volume. To achieve these goals and provide a favorable concentration gradient for the gas exchange throughout the fiber bundle, this study attempts to find an optimized inlet and outlet port geometry to guide the flow of a hexagonal-shaped oxygenator currently under development. Parameters derived from numerical flow simulations allowed an automated quantitative evaluation of geometry changes of flow distribution plates. This led to a practical assessment of the quality of the flow. The results were validated qualitatively by comparison to flow visualization results. Two parameters were investigated, the first based on the velocity distribution and the second calculated from the residence time of massless particles representing erythrocytes. Both approaches showed significant potential to improve the flow pattern in the fiber bundle, based on one of the parameters of up to 66%. Computational fluid dynamics combined with a parameterization proved to be a powerful tool to quickly improve oxygenator designs.


Assuntos
Simulação por Computador , Desenho Assistido por Computador , Modelos Cardiovasculares , Análise Numérica Assistida por Computador , Oxigenadores , Velocidade do Fluxo Sanguíneo , Desenho de Equipamento , Segurança de Equipamentos , Eritrócitos/fisiologia , Hemorreologia , Teste de Materiais , Oxigenadores/efeitos adversos , Reprodutibilidade dos Testes
8.
Artif Organs ; 34(11): 904-10, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21092033

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for several lung and heart diseases in the field of neonatal and pediatric medicine (e.g., acute respiratory distress syndrome, congenital heart failure, cardiomyopathy). Current ECMO systems are typically composed of an oxygenator and a separate nonpulsatile blood pump. An oxygenator with an integrated pulsatile blood pump for small infant ECMO was developed, and this novel concept was tested regarding functionality and gas exchange rate. Pulsating silicone tubes (STs) were driven by air pressure and placed inside the cylindrical fiber bundle of an oxygenator to be used as a pump module. The findings of this study confirm that pumping blood with STs is a viable option for the future. The maximum gas exchange rate for oxygen is 48mL/min/L(blood) at a medium blood flow rate of about 300mL/min. Future design steps were identified to optimize the flow field through the fiber bundle to achieve a higher gas exchange rate. First, the packing density of the hollow-fiber bundle was lower than commercial oxygenators due to the manual manufacturing. By increasing this packing density, the gas exchange rate would increase accordingly. Second, distribution plates for a more uniform blood flow can be placed at the inlet and outlet of the oxygenator. Third, the hollow-fiber membranes can be individually placed to ensure equal distances between the surrounding hollow fibers.


Assuntos
Oxigenação por Membrana Extracorpórea/instrumentação , Coração Auxiliar , Oxigenadores de Membrana , Fluxo Pulsátil , Pressão do Ar , Velocidade do Fluxo Sanguíneo , Dióxido de Carbono/sangue , Elasticidade , Desenho de Equipamento , Humanos , Recém-Nascido , Teste de Materiais , Miniaturização , Oxigênio/sangue , Desenho de Prótese , Silicones , Fatores de Tempo
9.
Artif Organs ; 34(10): 798-806, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20964698

RESUMO

Tip geometry and placement of rotary blood pump inflow and outflow cannulae influence the dynamics of flow within the ventricle and aortic branch. Cannulation, therefore, directly influences the potential for thrombus formation and end-organ perfusion during ventricular assist device (VAD) support or cardiopulmonary bypass (CPB). The purpose of this study was to investigate the effect of various inflow/outflow cannula tip geometries and positions on ventricular and greater vessel flow patterns to evaluate ventricular washout and impact on cerebral perfusion. Transparent models of a dilated cardiomyopathic ventricle and an aortic branch were reconstructed from magnetic resonance imaging data to allow flow measurements using particle image velocimetry (PIV). The contractile function of the failing ventricle was reproduced pneumatically, and supported with a rotary pump. Flow patterns were visualized around VAD inflow cannulae, with various tip geometries placed in three positions in the ventricle. The outflow cannula was placed in the subclavian artery and at several positions in the aorta. Flow patterns were measured using PIV and used to validate an aortic flow computational fluid dynamic study. The PIV technique indicated that locating the inflow tip in the left ventricular outflow tract improved complete ventricular washout while the tip geometry had a smaller influence. However, side holes in the inflow cannula improved washout in all cases. The PIV results confirmed that the positioning and orientation of the outflow cannula in the aortic branch had a high impact on the flow pattern in the vessels, with a negative blood flow in the right carotid artery observed in some cases. Cannula placement within the ventricle had a high influence on chamber washout. The positioning of the outflow cannula directly influences the flow through the greater vessels, and may be responsible for the occasional reduction in cerebral perfusion seen in clinical CPB.


Assuntos
Aorta/fisiologia , Cateterismo/instrumentação , Coração Auxiliar , Hemodinâmica , Animais , Aorta/anatomia & histologia , Desenho de Equipamento , Humanos , Modelos Cardiovasculares , Artéria Subclávia/fisiologia , Suínos
10.
ASAIO J ; 66(6): 683-690, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31789656

RESUMO

Wearable extracorporeal membrane oxygenation (ECMO) circuits may soon become a viable alternative to conventional ECMO treatment. Common device-induced complications, however, such as blood trauma and oxygenator thrombosis, must first be addressed to improve long-term reliability, since ambulatory patients cannot be monitored as closely as intensive care patients. Additionally, an efficient use of the membrane surface can reduce the size of the devices, priming volume, and weight to achieve portability. Both challenges are linked to the hemodynamics in the fiber bundle. While experimental test methods can often only provide global and time-averaged information, computational fluid dynamics (CFD) can give insight into local flow dynamics and gas transfer before building the first laboratory prototype. In this study, we applied our previously introduced micro-scale CFD model to the full fiber bundle of a small oxygenator for gas transfer prediction. Three randomized geometries as well as a staggered and in-line configuration were modeled and simulated with Ansys CFX. Three small laboratory oxygenator prototypes were built by stacking fiber segments unidirectionally with spacers between consecutive segments. The devices were tested in vitro for gas transfer with porcine blood in accordance with ISO 7199. The error of the predicted averaged CFD oxygen saturations of the random 1, 2, and 3 configurations relative to the averaged in-vitro data (over all samples and devices) was 2.4%, 4.6%, 3.1%, and 3.0% for blood flow rates of 100, 200, 300, and 400 ml/min, respectively. While our micro-scale CFD model was successfully applied to a small oxygenator with unidirectional fibers, the application to clinically relevant oxygenators will remain challenging due to the complex flow distribution in the fiber bundle and high computational costs. However, we will outline our future research priorities and discuss how an extended mass transfer correlation model implemented into CFD might enable an a priori prediction of gas transfer in full size oxygenators.


Assuntos
Simulação por Computador , Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/instrumentação , Hidrodinâmica , Oxigenadores de Membrana , Animais , Hemodinâmica/fisiologia , Humanos , Suínos
11.
ASAIO J ; 66(4): 423-432, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31192843

RESUMO

Children with end-stage lung failure awaiting lung transplant would benefit from improvements in artificial lung technology allowing for wearable pulmonary support as a bridge-to-transplant therapy. In this work, we designed, fabricated, and tested the Pediatric MLung-a dual-inlet hollow fiber artificial lung based on concentric gating, which has a rated flow of 1 L/min, and a pressure drop of 25 mm Hg at rated flow. This device and future iterations of the current design are designed to relieve pulmonary arterial hypertension, provide pulmonary support, reduce ventilator-associated injury, and allow for more effective therapy of patients with end-stage lung disease, including bridge-to-transplant treatment.


Assuntos
Órgãos Artificiais , Insuficiência Respiratória/terapia , Criança , Desenho de Equipamento , Humanos , Transplante de Pulmão
12.
Artif Organs ; 33(9): 740-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19775266

RESUMO

The influence of heat dissipating systems, such as rotary blood pumps, was investigated. Titanium cylinders as rotary blood pump housing dummies were immersed in porcine blood and constantly tempered at specific temperatures (37-60 degrees C) over a defined period of time. The porcine blood was anticoagulated either by low heparin dosage or citrate. At frequent intervals, samples were taken for blood analysis and the determination of the plasmatic coagulation cascade. Blood parameters do not alter at surface temperatures below 50 degrees C. Hyperthermia-induced hemolysis could be confirmed. The plasmatic coagulation cascade is terminated at surface temperatures exceeding 55 degrees C. The adhesion of blood constituents on surfaces is temperature and time dependent, and structural changes of adhesions and blood itself were detected.


Assuntos
Coagulação Sanguínea , Coração Auxiliar/efeitos adversos , Hemólise , Temperatura Alta , Rotação , Adesividade , Animais , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Ácido Cítrico/farmacologia , Desenho de Equipamento , Heparina/farmacologia , Teste de Materiais , Propriedades de Superfície , Suínos , Fatores de Tempo , Titânio
13.
ASAIO J ; 63(5): 637-643, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28665829

RESUMO

Current hollow fiber membrane lungs feature a predominantly straight blood path length across the fiber bundle, resulting in limited O2 transfer efficiency because of the diffusion boundary layer effect. Using computational fluid dynamics and optical flow visualization methods, a hollow fiber membrane lung was designed comprising unique concentric circular blood flow paths connected by gates. The prototype lung, comprising a fiber surface area of 0.28 m, has a rated flow of 2 L/min, and the oxygenation efficiency is 357 ml/min/m. The CO2 clearance of the lung is 200 ml/min at the rated blood flow. Given its high gas transfer efficiency, as well as its compact size, low priming volume, and propensity for minimal thrombogenicity, this lung design has the potential to be used in a range of acute and chronic respiratory support applications, including providing total respiratory support for infants and small children and CO2 clearance in adults.


Assuntos
Oxigenadores de Membrana , Adulto , Dióxido de Carbono/sangue , Criança , Desenho de Equipamento , Humanos , Pulmão/fisiologia , Oxigênio/sangue
14.
Cardiovasc Eng Technol ; 6(3): 340-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26577365

RESUMO

Computational fluid dynamics (CFD) is used to simulate blood flow inside the fiber bundles of oxygenators. The results are interpreted in terms of flow distribution, e.g., stagnation and shunt areas. However, experimental measurements that provide such information on the local flow between the fibers are missing. A transparent model of an oxygenator was built to perform particle image velocimetry (PIV), to perform the experimental validation. The similitude theory was used to adjust the size of the PIV model to the minimal resolution of the PIV system used (scale factor 3.3). A standard flow of 80 mL/min was simulated with CFD for the real oxygenator and the equivalent flow of 711 mL/min, according to the similitude theory, was investigated with PIV. CFD predicts the global size of stagnation and shunt areas well, but underestimates the streamline length and changes in velocities due to the meandering flow around the real fibers in the PIV model. Symmetrical CFD simulation cannot consider asymmetries in the flow, due to manufacturing-related asymmetries in the fiber bundle. PIV could be useful for validation of CFD simulations; measurement quality however must be improved for a quantitative validation of CFD results and the investigation of flow effects such as tortuosity and anisotropic flow behavior.


Assuntos
Hemodinâmica , Hidrodinâmica , Oxigenadores de Membrana , Reologia/métodos , Simulação por Computador , Desenho de Equipamento , Modelos Cardiovasculares
15.
ASAIO J ; 61(5): 574-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098176

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a pivotal bridge to recovery for cardiopulmonary failure in children. Besides its life-saving quality, it is often associated with severe system-related complications, such as hemolysis, inflammation, and thromboembolism. Novel oxygenator and pump systems may reduce such ECMO-related complications. The ExMeTrA oxygenator is a newly designed pediatric oxygenator with an integrated pulsatile pump minimizing the priming volume and reducing the surface area of blood contact. The aim of our study was to investigate the feasibility and safety of this new ExMeTrA (expansion mediated transport and accumulation) oxygenator in an animal model. During 6 h of extracorporeal circulation (ECC) in pigs, parameters of the hemostatic system including coagulation, platelets and complement activation, and flow rates were investigated. A nonsignificant trend in C3 consumption, thrombin-antithrombin-III (TAT) complex formation and a slight trend in hemolysis were detected. During the ECC, the blood flow was constantly at 500 ml/min using only flexible silicone tubes inside the oxygenator as pulsatile pump. Our data clearly indicate that the hemostatic markers were only slightly influenced by the ExMeTrA oxygenator. Additionally, the oxygenator showed a constant quality of blood flow. Therefore, this novel pediatric oxygenator shows the potential to be used in pediatric and neonatal support with ECMO.


Assuntos
Oxigenação por Membrana Extracorpórea/instrumentação , Oxigenadores de Membrana , Fluxo Pulsátil , Animais , Oxigenação por Membrana Extracorpórea/métodos , Estudos de Viabilidade , Testes Hematológicos , Modelos Animais , Suínos , Resultado do Tratamento
16.
Int J Artif Organs ; 37(1): 88-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24634337

RESUMO

Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.


Assuntos
Gasometria/instrumentação , Oxigenação por Membrana Extracorpórea/instrumentação , Oxigenadores de Membrana , Desenho de Equipamento , Hemorreologia , Humanos , Técnicas In Vitro , Recém-Nascido , Fluxo Pulsátil
17.
Biomed Tech (Berl) ; 59(2): 125-33, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24327525

RESUMO

Extracorporeal life support (ECLS) is a well-established technique for the treatment of different cardiac and pulmonary diseases, e.g., congenital heart disease and acute respiratory distress syndrome. Additionally, severely ill patients who cannot be weaned from the heart-lung machine directly after surgery have to be put on ECLS for further therapy. Although both systems include identical components, a seamless transition is not possible yet. The adaption of the circuit to the patients' size and demand is limited owing to the components available. The project I³-Assist aims at a novel concept for extracorporeal circulation. To better match the patient's therapeutic demand of support, an individual number of one-size oxygenators and heat exchangers will be combined. A seamless transition between cardiopulmonary bypass and ECLS will be possible as well as the exchange of components during therapy to enhance circuit maintenance throughout long-term support. Until today, a novel oxygenator and heat exchanger along with a simplified manufacturing protocol have been established. The first layouts of the unit to allow the spill- and bubble-free connection and disconnection of modules as well as improved cannulas and a rotational pump are investigated using computational fluid dynamics. Tests were performed according to current guidelines in vitro and in vivo. The test results show the feasibility and potential of the concept.


Assuntos
Circulação Extracorpórea/instrumentação , Máquina Coração-Pulmão , Terapia Assistida por Computador/instrumentação , Interface Usuário-Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Circulação Extracorpórea/métodos , Estudos de Viabilidade , Humanos , Integração de Sistemas , Terapia Assistida por Computador/métodos
18.
Biomed Tech (Berl) ; 59(2): 135-45, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24523303

RESUMO

The ultimate objective of university research and development projects is usually to create knowledge, but also to successfully transfer results to industry for subsequent marketing. We hypothesized that the university technology transfer requires efficient measures to improve this important step. Besides good scientific practice, foresighted and industry-specific adapted documentation of research processes in terms of a quality management system might improve the technology transfer. In order to bridge the gap between research institute and cooperating industry, a model project has been accompanied by a project specific amount of quality management. However, such a system had to remain manageable and must not constrain the researchers' creativity. Moreover, topics and research team are strongly interdisciplinary, which entails difficulties regarding communication because of different perspectives and terminology. In parallel to the technical work of the model project, an adaptable quality management system with a quality manual, defined procedures, and forms and documents accompanying the research, development and validation was implemented. After process acquisition and analysis the appropriate amount of management for the model project was identified by a self-developed rating system considering project characteristics like size, innovation, stakeholders, interdisciplinarity, etc. Employees were trained according to their needs. The management was supported and the technical documentation was optimized. Finally, the quality management system has been transferred successfully to further projects.


Assuntos
Equipamentos e Provisões/normas , Guias como Assunto , Pesquisa/organização & administração , Transferência de Tecnologia , Gestão da Qualidade Total/organização & administração , Pesquisa Translacional Biomédica/organização & administração , Universidades/organização & administração , Alemanha
19.
ASAIO J ; 58(4): 420-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22588146

RESUMO

For different lung and heart diseases (e.g., acute respiratory distress syndrome, congenital heart failure, and cardiomyopathy) extracorporeal membrane oxygenation is a well-established therapy, particularly in the field of neonatal and pediatric medicine. To reduce the priming volume of the extracorporeal circuit, different components can be combined. In this study, an oval-shaped oxygenator (called ExMeTrA) with integrated pulsatile pump was tested in vitro using porcine blood. A feasibility study regarding the performance of collapsing and expanding silicone tubes within an oxygenator fiber bundle as a pulsatile pump was previously completed with successful results. The findings of this study improve upon the previous feasibility results, particularly in terms of gas exchange and filling volume. Five modules were manufactured in sizes of 20 ± 2.2 ml (priming volume) with fiber surface areas of 0.24 ± 0.027 m(2) and an analytically calculated volume pumping capacity of 692 ± 75 ml/min. The modules were made of polymethylpentene fibers with dense outer layer to permit long-term applications. The gas exchange rates at a gas/blood flow ratio of 2:1 were between 64 and 72.7 ml(O)(2)/l(blood) and between 62.5 and 81.5 ml/l(blood), depending on the blood flow. The individual module's pumping capacity ranged from 200-500 ml/min thus providing room for further improvements. In order to enhance the pumping capacity while maintaining sufficient gas exchange rates future optimization, adjustments will be made to the inlet and outlet geometries.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Coração Auxiliar , Oxigênio/metabolismo , Oxigenadores de Membrana , Pediatria/métodos , Animais , Velocidade do Fluxo Sanguíneo , Desenho de Equipamento , Humanos , Técnicas In Vitro , Teste de Materiais , Oxigênio/química , Síndrome do Desconforto Respiratório/terapia , Silicones/química , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa