Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Toxicol ; 35(7): 831-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25424538

RESUMO

Previously, we identified 25 classifier genes that were able to assess immunotoxicity using human Jurkat T cells. The present study aimed to validate these classifiers. For that purpose, Jurkat cells were exposed for 6 h to subcytotoxic doses of nine immunotoxicants, five non-immunotoxicants and four compounds for which human immunotoxicity has not yet been fully established. RNA was isolated and subjected to Fluidigm quantitative real time (qRT)-PCR analysis. The sensitivity, specificity and accuracy of the screening assay as based on the nine immunotoxicants and five non-immunotoxicants used in this study were 100%, 80% and 93%, respectively, which is better than the performance in our previous study. Only one compound was classified as false positive (benzo-e-pyrene). Of the four potential (non-)immunotoxicants, chlorantraniliprole and Hidrasec were classified immunotoxic and Sunset yellow and imidacloprid as non-immunotoxic. ToxPi analysis of the PCR data provided insight in the molecular pathways that were affected by the compounds. The immunotoxicants 2,3-dichloro-propanol and cypermethrin, although structurally different, affected protein metabolism and cholesterol biosynthesis and transport. In addition, four compounds, i.e. chlorpyrifos, aldicarb, benzo-e-pyrene and anti-CD3, affected genes in cholesterol metabolism and transport, protein metabolism and transcription regulation. qRT-PCR on eight additional genes coding for similar processes as defined in ToxPi analyzes, supported these results. In conclusion, the 25 immunotoxic classifiers performed very well in a screening with new non-immunotoxic and immunotoxic compounds. Therefore, the Jurkat screening assay has great promise to be applied within a tiered approach for animal free testing of human immunotoxicity.


Assuntos
Marcadores Genéticos/efeitos dos fármacos , Imunotoxinas/farmacologia , Células Jurkat/efeitos dos fármacos , Aldicarb/farmacologia , Aldicarb/toxicidade , Compostos Azo/farmacologia , Compostos Azo/toxicidade , Benzopirenos/farmacologia , Benzopirenos/toxicidade , Biomarcadores Farmacológicos , Cloridrinas/farmacologia , Cloridrinas/toxicidade , Clorpirifos/farmacologia , Clorpirifos/toxicidade , Humanos , Imidazóis/farmacologia , Imidazóis/toxicidade , Técnicas In Vitro , Neonicotinoides , Nitrocompostos/farmacologia , Nitrocompostos/toxicidade , Piretrinas/farmacologia , Piretrinas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Testes de Toxicidade , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/toxicidade
3.
Toxicol Lett ; 224(3): 395-406, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24247028

RESUMO

Previously, we studied the effects of deoxynivalenol (DON) and tributyltin oxide (TBTO) on whole genome mRNA expression profiles of human T lymphocyte Jurkat cells. These studies indicated that DON induces ribotoxic stress and both DON and TBTO induced ER stress which resulted into T-cell activation and apoptosis. The first goal of the present study was to provide final proof for these mode of actions by comparing the effects of 6 h exposure to DON and TBTO on mRNA expression to those of positive controls of ribotoxic stress (anisomycin), ER stress (thapsigargin) and T cell activation (ionomycin). Genes affected by anisomycin and the majority of genes affected by thapsigargin were affected in the same direction by DON and TBTO, respectively, confirming the expected modes of action. Pathway analysis further sustained that DON induces ribotoxic stress and both DON and TBTO induce unfolded protein response (UPR), ER stress, T cell activation and apoptosis. The second goal was to assess whether DON and/or TBTO affect other pathways above those detected before. TBTO induced groups of genes that are involved in DNA packaging and heat shock response that were not affected by thapsigargin. DON did not affect other genes than anisomycin indicating the effect of DON to be restricted to ribotoxic stress. This study also demonstrates that comparative gene expression analysis is a very promising tool for the identification of modes of action of immunotoxic compounds.


Assuntos
Anisomicina/toxicidade , Carcinógenos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Inibidores da Síntese de Ácido Nucleico/toxicidade , Tapsigargina/toxicidade , Compostos de Trialquitina/toxicidade , Tricotecenos/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mapeamento Cromossômico , Interpretação Estatística de Dados , Proteínas de Choque Térmico/metabolismo , Humanos , Ionomicina/farmacologia , Células Jurkat , Análise em Microsséries , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/isolamento & purificação , Linfócitos T/efeitos dos fármacos
4.
Toxicol Lett ; 217(1): 1-13, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23253260

RESUMO

A toxicogenomics approach was applied to assess the usefulness of the mouse cytotoxic T cell line CTLL-2 for in vitro immunotoxicity testing. CTLL-2 cells were exposed for 6 h to two model immunotoxic compounds: (1) the mycotoxin deoxynivalenol (DON, 1 and 2 µM), a ribotoxic stress inducer, and (2) the organotin compound tributyltin oxide (TBTO, 100 and 200 nM), an endoplasmic reticulum (ER) stress inducer. Effects on whole-genome mRNA expression were assessed by microarray analysis. The biological interpretation of the microarray data indicated that TBTO (200 nM) induced genes involved in T cell activation, ER stress, NFκB activation and apoptosis, which agreed very well with results obtained before on TBTO exposed Jurkat cells and mouse primary thymocytes. Remarkably, DON (2 µM) downregulated genes involved in T cell activation, ER stress and apoptosis, which is opposite to results obtained before for DON-exposed Jurkat cells and mouse primary thymocytes. Furthermore, the results for DON in CTLL-2 cells are also opposite to the results obtained for TBTO in CTLL-2 cells. In agreement with the lack of induction of ER stress and apoptosis, viability assays showed that CTLL-2 cells are much more resistant to the toxicity of DON than Jurkat cells and primary thymocytes. We propose that CTLL-2 cells lack the signal transduction that induces ER stress and apoptosis in response to ribotoxic stress. Based on the results for TBTO and DON, the CTLL-2 cell line does not yield an added value for immunotoxicity compared to the human Jurkat T cell line.


Assuntos
Fatores Imunológicos/farmacologia , Imunossupressores/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Tecnologia Farmacêutica , Toxicogenética/métodos , Transcriptoma/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Células Jurkat , Camundongos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Compostos de Trialquitina/farmacologia , Tricotecenos/farmacologia
5.
Toxicol Sci ; 135(2): 328-46, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23824090

RESUMO

Compounds with direct immunotoxic properties, including metals, mycotoxins, agricultural pesticides, and industrial chemicals, form potential human health risks due to exposure through food, drinking water, and the environment. Insights into the mechanisms of action are currently lacking for the majority of these direct immunotoxicants. Therefore, the present work aimed to gain insights into the molecular mechanisms underlying direct immunotoxicity. To this end, we assessed in vitro the effects of 31 test compounds on the transcriptome of the human Jurkat T-cell line. These compounds included direct immunotoxicants, immunosuppressive drugs with different mode of actions, and nonimmunotoxic control chemicals. Pathway analysis of the microarray data allowed us to identify canonical pathways and Gene Ontology processes that were transcriptionally regulated in common by immunotoxicants (1) with structural similarities, such as tributyltin chloride and tributyltin oxide that activated the retinoic acid/X receptor signaling pathway and (2) without structural similarities, such as As2O3, dibutyltin chloride, diazinon, MeHg, ochratoxin A (OTA), S9-treated OTA, S9-treated cyclophosphamide, and S9-treated benzo[a]pyrene, which activated unfolded protein response, and FTY720, lindane, and propanil, which activated the cholesterol biosynthesis pathway. In addition, processes uniquely affected by individual immunotoxicants were identified, such as the induction of Notch receptor signaling and the downregulation of acute-phase response genes by OTA. These findings were validated by quantitative real-time PCR analysis of genes involved in these processes. Our study indicated that diverse modes of action are involved in direct immunotoxicity and that a set of pathways or genes, rather than one single gene, can be used to screen compounds for direct immunotoxicity.


Assuntos
Genômica , Testes de Toxicidade , Humanos , Células Jurkat
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa