Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 48(2): 141-4, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20972249

RESUMO

BACKGROUND: Cerebral palsy is a heterogeneous group of neurodevelopmental brain disorders resulting in motor and posture impairments often associated with cognitive, sensorial, and behavioural disturbances. Hypoxic-ischaemic injury, long considered the most frequent causative factor, accounts for fewer than 10% of cases, whereas a growing body of evidence suggests that diverse genetic abnormalities likely play a major role. METHODS AND RESULTS: This report describes an autosomal recessive form of spastic tetraplegic cerebral palsy with profound intellectual disability, microcephaly, epilepsy and white matter loss in a consanguineous family resulting from a homozygous deletion involving AP4E1, one of the four subunits of the adaptor protein complex-4 (AP-4), identified by chromosomal microarray analysis. CONCLUSION: These findings, along with previous reports of human and mouse mutations in other members of the complex, indicate that disruption of any one of the four subunits of AP-4 causes dysfunction of the entire complex, leading to a distinct 'AP-4 deficiency syndrome'.


Assuntos
Anormalidades Múltiplas/genética , Complexo 4 de Proteínas Adaptadoras/deficiência , Paralisia Cerebral/genética , Deficiência Intelectual/genética , Microcefalia/genética , Anormalidades Múltiplas/patologia , Complexo 4 de Proteínas Adaptadoras/genética , Paralisia Cerebral/patologia , Genes Recessivos , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/patologia , Análise em Microsséries , Microcefalia/patologia , Linhagem , Síndrome
2.
Mol Cytogenet ; 1: 8, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18471269

RESUMO

BACKGROUND: Interstitial deletions of 3q29 have been recently described as a microdeletion syndrome mediated by nonallelic homologous recombination between low-copy repeats resulting in an ~1.6 Mb common-sized deletion. Given the molecular mechanism causing the deletion, the reciprocal duplication is anticipated to occur with equal frequency, although only one family with this duplication has been reported. RESULTS: In this study we describe 14 individuals with microdeletions of 3q29, including one family with a mildly affected mother and two affected children, identified among 14,698 individuals with idiopathic mental retardation who were analyzed by array CGH. Eleven individuals had typical 1.6-Mb deletions. Three individuals had deletions that flank, span, or partially overlap the commonly deleted region. Although the clinical presentations of individuals with typical-sized deletions varied, several features were present in multiple individuals, including mental retardation and microcephaly. We also identified 19 individuals with duplications of 3q29, five of which appear to be the reciprocal duplication product of the 3q29 microdeletion and 14 of which flank, span, or partially overlap the common deletion region. The clinical features of individuals with microduplications of 3q29 also varied with few common features. De novo and inherited abnormalities were found in both the microdeletion and microduplication cohorts illustrating the need for parental samples to fully characterize these abnormalities. CONCLUSION: Our report demonstrates that array CGH is especially suited to identify chromosome abnormalities with unclear or variable presentations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa