Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(4): 664-677.e11, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802039

RESUMO

The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD+-related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging.


Assuntos
Envelhecimento/metabolismo , Ritmo Circadiano , Fígado/metabolismo , Redes e Vias Metabólicas , Acetilcoenzima A/metabolismo , Acetilação , Envelhecimento/patologia , Animais , Restrição Calórica , Histonas/metabolismo , Fígado/patologia , Camundongos , NAD/metabolismo , Proteínas/metabolismo , Sirtuína 1/metabolismo , Células-Tronco/metabolismo , Transcriptoma
2.
EMBO J ; 43(3): 362-390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212381

RESUMO

Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.


Assuntos
Insuficiência Cardíaca , Doenças Mitocondriais , Humanos , NAD/metabolismo , NF-kappa B/metabolismo , Proteína Sequestossoma-1/genética , Homeostase , Autofagia , Mononucleotídeo de Nicotinamida
3.
Mol Cell ; 78(5): 835-849.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369735

RESUMO

Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores Etários , Envelhecimento/genética , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
4.
J Biol Chem ; 295(52): 17986-17996, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33051211

RESUMO

Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+ Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.


Assuntos
COVID-19/metabolismo , NAD/imunologia , Poli(ADP-Ribose) Polimerases/imunologia , SARS-CoV-2/imunologia , Células A549 , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Adulto , Animais , COVID-19/imunologia , Linhagem Celular Tumoral , Feminino , Furões , Humanos , Imunidade Inata , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/sangue , Compostos de Piridínio , SARS-CoV-2/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(42): 10654-10659, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30257945

RESUMO

Axon degeneration, a hallmark of chemotherapy-induced peripheral neuropathy (CIPN), is thought to be caused by a loss of the essential metabolite nicotinamide adenine dinucleotide (NAD+) via the prodegenerative protein SARM1. Some studies challenge this notion, however, and suggest that an aberrant increase in a direct precursor of NAD+, nicotinamide mononucleotide (NMN), rather than loss of NAD+, is responsible. In support of this idea, blocking NMN accumulation in neurons by expressing a bacterial NMN deamidase protected axons from degeneration. We hypothesized that protection could similarly be achieved by reducing NMN production pharmacologically. To achieve this, we took advantage of an alternative pathway for NAD+ generation that goes through the intermediate nicotinic acid mononucleotide (NAMN), rather than NMN. We discovered that nicotinic acid riboside (NAR), a precursor of NAMN, administered in combination with FK866, an inhibitor of the enzyme nicotinamide phosphoribosyltransferase that produces NMN, protected dorsal root ganglion (DRG) axons against vincristine-induced degeneration as well as NMN deamidase. Introducing a different bacterial enzyme that converts NAMN to NMN reversed this protection. Collectively, our data indicate that maintaining NAD+ is not sufficient to protect DRG neurons from vincristine-induced axon degeneration, and elevating NMN, by itself, is not sufficient to cause degeneration. Nonetheless, the combination of FK866 and NAR, which bypasses NMN formation, may provide a therapeutic strategy for neuroprotection.


Assuntos
Acrilamidas/farmacologia , NAD/metabolismo , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/análogos & derivados , Piperidinas/farmacologia , Vincristina/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Combinação de Medicamentos , Francisella tularensis/enzimologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Niacinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio
6.
J Mol Cell Cardiol ; 141: 70-81, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32209328

RESUMO

RATIONALE: The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE: To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS: The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 µM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 µM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS: NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.


Assuntos
Ativação do Canal Iônico , Miocárdio/metabolismo , NAD/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Acetilação/efeitos dos fármacos , Animais , Suplementos Nutricionais , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lisina/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Ratos Sprague-Dawley
7.
FASEB J ; 31(12): 5440-5452, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842432

RESUMO

NAD+ depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD+ was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD+ to NR prompted us to probe the effects of NAD+ and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD+ reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD+ Moreover, the stronger effect of NR compared to NAD+ depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD+ and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD+ in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD+ homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.


Assuntos
Axônios/efeitos dos fármacos , Axônios/metabolismo , Niacinamida/análogos & derivados , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Niacinamida/farmacologia , Compostos de Piridínio , Reação em Cadeia da Polimerase em Tempo Real
8.
Clin Infect Dis ; 62(3): 334-341, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26486704

RESUMO

BACKGROUND: Available treatments for lymphatic filariasis (LF) are limited in their longterm clearance of microfilaria from the blood. The safety and efficacy of a single-dose triple-drug therapy of the antifilarial drugs diethylcarbamazine (DEC), ivermectin (IVM), and albendazole (ALB) for LF are unknown. METHODS: We performed a pilot study to test the efficacy, safety, and pharmacokinetics of single-dose DEC, IVM, and ALB in Wuchereria bancrofti-infected Papua New Guineans. Adults were randomized into 2 treatment arms, DEC 6 mg/kg + ALB 400 mg (N = 12) or DEC 6 mg/kg + ALB 400 mg + IVM 200 µg/kg (N = 12), and monitored for microfilaria, parasite antigenemia, adverse events (AEs), and serum drug levels. RESULTS: Triple-drug therapy induced >2-log reductions in microfilaria levels at 36 and 168 hours after treatment compared with approximately 1-log reduction with 2 drugs. All 12 individuals who received 3 drugs were microfilaria negative 1 year after treatment, whereas 11 of 12 individuals in the 2-drug regimen were microfilaria positive. In 6 participants followed 2 years after treatment, those who received 3 drugs remained microfilaria negative. AEs, particularly fever, myalgias, pruritus, and proteinuria/hematuria, occurred in 83% vs 50% of those receiving triple-drug compared to 2-drug treatment respectively (P = .021); all resolved within 7 days after treatment. No serious AEs were observed in either group. There was no significant effect of IVM on DEC or ALB drug levels. CONCLUSIONS: Triple-drug therapy is safe and more effective than DEC + ALB for Bancroftian filariasis and has the potential to accelerate elimination of lymphatic filariasis. CLINICAL TRIALS REGISTRATION: NCT01975441.


Assuntos
Albendazol/administração & dosagem , Dietilcarbamazina/administração & dosagem , Filariose Linfática/tratamento farmacológico , Filaricidas/administração & dosagem , Ivermectina/administração & dosagem , Adulto , Albendazol/efeitos adversos , Albendazol/farmacocinética , Animais , Dietilcarbamazina/efeitos adversos , Dietilcarbamazina/farmacocinética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Filaricidas/efeitos adversos , Filaricidas/farmacocinética , Humanos , Ivermectina/efeitos adversos , Ivermectina/farmacocinética , Masculino , Pessoa de Meia-Idade , Papua Nova Guiné , Parasitemia/tratamento farmacológico , Projetos Piloto , Soro/química , Método Simples-Cego , Resultado do Tratamento , Wuchereria bancrofti/isolamento & purificação , Adulto Jovem
9.
J Child Adolesc Trauma ; 17(3): 1-16, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309353

RESUMO

Childhood trauma is associated with poor health outcomes in adulthood, largely due to the impact of chronic stress on the body. Fortunately, there are certain protective characteristics, such as constraint (i.e., impulse control, inhibition, and avoidance of unconventional behavior and risk) and cognitive reappraisal (i.e., reframing circumstances in a more positive light). In the present study, we investigated the interaction between childhood trauma, resilience, and neural correlates of emotion processing. Participants responded to survey questions regarding childhood trauma and resilient characteristics. They were later invited to passively view neutral, unpleasant, and pleasant images while their brain activity was recorded via electroencephalography (EEG). We analyzed two event-related potential (ERP) components of interest: the Early Posterior Negativity (EPN) and Late Positive Potential (LPP). We found that childhood trauma was associated with decreased constraint and reduced sensitivity to unpleasant images (i.e., decreased LPP amplitude differences between neutral and unpleasant images as compared to controls). Further, constraint predicted increased sensitivity to pleasant images. In a hierarchical linear regression analysis, we found that constraint moderated the relation between childhood trauma and emotion processing, such that it predicted increased sensitivity to unpleasant images for adults with childhood trauma in particular. Childhood trauma and cognitive reappraisal independently predicted decreased sensitivity to unpleasant images, (i.e., decreased LPP amplitude differences between neutral and unpleasant images). Our findings suggest that childhood trauma and resilient characteristics independently and interactively influence emotion processing.

10.
Geroscience ; 46(1): 665-682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994989

RESUMO

Nicotinamide riboside (NR) increases blood levels of NAD+, a cofactor central to energy metabolism, and improves brain function in some rodent models of neurodegeneration. We conducted a placebo-controlled randomized pilot study with the primary objective of determining safety of NR in older adults with mild cognitive impairment (MCI). Twenty subjects with MCI were randomized to receive placebo or NR using dose escalation to achieve, and maintain, a final dose of 1 g/day over a 10-week study duration. The primary outcome was post-treatment change from baseline measures of cognition (Montreal Cognitive Assessment, MoCA). Predefined secondary outcomes included post-treatment changes in cerebral blood flow (CBF); blood NAD+ levels; and additional neurocognitive, psychometric, and physical performance tests. DNA methylation was assessed in peripheral blood mononuclear cells (PBMCs) as an exploratory outcome. The target NR dose was safely achieved as evidenced by a 2.6-fold increase in blood NAD+ in the NR group (p < 0.001, 95% CI [17.77, 43.49]) with no between-group difference in adverse event reporting. MoCA and other neurocognitive and psychometric metrics remained stable throughout the study. NR reduced CBF in the default mode network (DMN) with greatest differences observed in the left inferior parietal lobe (IPL) (DMN p = 0.013, µ = 0.92, 95% CI [0.23, 1.62]; left IPL p = 0.009, µ = 1.66, 95% CI [0.5, 2.82]). Walking speed in the placebo group significantly improved across the study duration suggestive of a practice effect but did not change in the NR group (p = 0.0402 and p = 0.4698, respectively). Other secondary outcome measures remained stable. Global methylation analyses indicated a modest NR-associated increase in DNA methylation and concomitant reduction in epigenetic age as measured by PhenoAge and GrimAge epigenetic clock analyses. In summary, NR significantly increased blood NAD+ concentrations in older adults with MCI. NR was well tolerated and did not alter cognition. While CBF was reduced by NR treatment, statistical significance would not have withstood multiple comparisons correction. A larger trial of longer duration is needed to determine the potential of NR as a strategy to improve cognition and alter CBF in older adults with MCI. ClinicalTrials.gov NCT02942888.


Assuntos
Disfunção Cognitiva , NAD , Niacinamida/análogos & derivados , Compostos de Piridínio , Humanos , Idoso , Projetos Piloto , Leucócitos Mononucleares , Disfunção Cognitiva/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa