Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460804

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Camundongos , Zika virus/genética , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina
2.
Brain Behav Immun ; 112: 29-41, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37146656

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus associated with several neurodevelopmental outcomes after in utero infection. Here, we studied a congenital ZIKV infection model with immunocompetent Wistar rats, able to predict disabilities and that could pave the way for proposing new effective therapies. We identified neurodevelopmental milestones disabilities in congenital ZIKV animals. Also, on 22nd postnatal day (PND), blood-brain barrier (BBB) proteins disturbances were detected in the hippocampus with immunocontent reduction of ß_Catenin, Occludin and Conexin-43. Besides, oxidative stress imbalance on hippocampus and cortex were identified, without neuronal reduction in these structures. In conclusion, even without pups' microcephaly-like phenotype, congenital ZIKV infection resulted in neurobehavioral dysfunction associated with BBB and oxidative stress disturbances in young rats. Therefore, our findings highlighted the multiple impact of the congenital ZIKV infection on the neurodevelopment, which reinforces the continuity of studies to understand the spectrum of this impairment and to provide support to future treatment development for patients affected by congenital ZIKV.


Assuntos
Doenças Transmissíveis , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Humanos , Gravidez , Feminino , Ratos , Animais , Zika virus/fisiologia , Barreira Hematoencefálica , Ratos Wistar
3.
Neurobiol Learn Mem ; 192: 107637, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598825

RESUMO

Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder. Since it is not yet known whether MPH can be administered in childhood without consequences in adulthood, in the present study we proposed to investigate the effects of chronic early treatment with MPH after a long period of discontinuation. Wistar male rats were injected with MPH (2 mg/kg, intraperitoneally) or saline solution once daily from 15th to 44th day of life. Two months after the last MPH administration, we evaluated the animal's performances on a battery of behavior tests. We also tested Na+,K+-ATPase and acetylcholinesterase activities in prefrontal cortex and hippocampus, which may be associated with behavior. Rats treated with MPH during peri-adolescence show changes in exploratory behavior in adulthood in the open field but not in the elevated plus maze and light-dark transition tests. MPH-treated rats showed a lower latency to find the platform in the training phase, as well as a better performance in the test phase in the Morris water maze test. No differences were observed in the object recognition index and working memory. Acetylcholinesterase was increased in prefrontal cortex and hippocampus, while Na+,K+-ATPase was increased only in hippocampus. These findings provide additional evidence that early-life exposure to MPH can have complex effects in adulthood and new basis for understanding the behavioral and neurochemical consequences associated with chronic use of MPH during the development of central nervous system.


Assuntos
Estimulantes do Sistema Nervoso Central , Comportamento Exploratório , Metilfenidato , ATPase Trocadora de Sódio-Potássio , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Metilfenidato/farmacologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Metab Brain Dis ; 37(4): 911-926, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35059965

RESUMO

Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco's phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1ß release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.


Assuntos
Acetilcolinesterase , Asma , Animais , Ansiedade , Asma/induzido quimicamente , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos
5.
An Acad Bras Cienc ; 93(2): e20191002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34190844

RESUMO

The enzyme acetylcholinesterase participates in the end of cholinergic transmission and it has been shown that its activity is increased in some diseases that affect the brain, including Alzheimer disease. The objective of this study was to investigate the effect of purple grape juice consumption with or without high-fat diet in the gestational and lactation period on acetylcholinesterase activity and oxidative stress parameters in the hippocampus of female descendants. During pregnancy and lactation, 40 female Wistar rats received a control diet or a high-fat diet, with half of them receiving grape juice. After lactation, the female descendants received water and control diet in ad libitum until euthanasia on the 120 postnatal day. Hippocampus from were removed for analysis of AChE activity, protein oxidation and lipid peroxidation. It was observed that high-fat diet consumption during the pregnancy increased the AChE activity and the grape juice reduced this activity in descendants. The same was observed in protein oxidation, the descendants from high-fat diet had significantly highest values, and grape juice decreased the levels. We conclude that dietary choices during pregnancy can alter the acetylcholinesterase levels and grape juice is an important alternative to improve this function in adulthood.


Assuntos
Vitis , Acetilcolinesterase , Animais , Bebidas/análise , Dieta Hiperlipídica , Feminino , Hipocampo , Estresse Oxidativo , Gravidez , Ratos , Ratos Wistar
6.
J Cell Physiol ; 235(1): 267-280, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31206674

RESUMO

Studies have shown autophagy participation in the immunopathology of inflammatory diseases. However, autophagy role in asthma and in eosinophil extracellular traps (EETs) release is poorly understood. Here, we attempted to investigate the autophagy involvement in EETs release and in lung inflammation in an experimental asthma model. Mice were sensitized with ovalbumin (OVA), followed by OVA challenge. Before the challenge with OVA, mice were treated with an autophagy inhibitor, 3-methyladenine (3-MA). We showed that 3-MA treatment decreases the number of eosinophils, eosinophil peroxidase (EPO) activity, goblet cells hyperplasia, proinflammatory cytokines, and nuclear factor kappa B (NFκB) p65 immunocontent in the lung. Moreover, 3-MA was able to improve oxidative stress, mitochondrial energy metabolism, and Na+ , K+ -ATPase activity. We demonstrated that treatment with autophagy inhibitor 3-MA reduced EETs formation in the airway. On the basis of our results, 3-MA treatment can be an interesting alternative for reducing lung inflammation, oxidative stress, mitochondrial damage, and EETs formation in asthma.


Assuntos
Adenina/análogos & derivados , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Autofagia/imunologia , Armadilhas Extracelulares/imunologia , Adenina/farmacologia , Animais , Asma/induzido quimicamente , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/imunologia , Feminino , Células Caliciformes/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Ovalbumina , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
7.
Am J Pathol ; 189(4): 730-738, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653952

RESUMO

Toxoplasmosis is a neglected disease that affects millions of individuals worldwide. Toxoplasma gondii infection is an asymptomatic disease, with lethal cases occurring mostly in HIV patients and organ transplant recipients. Nevertheless, atypical strains of T. gondii in endemic locations cause severe pathology in healthy individuals. Toxoplasmosis has no cure but it can be controlled by the proinflammatory immune response. The purinergic receptor P2X7 (P2X7) is involved in many inflammatory events and has been associated with genes that confer resistance against toxoplasmosis in humans. In vitro studies have reported parasite death after P2X7-receptor activation in various cell types. To understand the contribution of P2X7 during cerebral toxoplasmosis, wild-type and P2rx7 knockout mice were infected orally with T. gondii and their pathologic profiles were analyzed. We found that all P2rx7-/- mice died 8 weeks after infection with an increased number of cysts and fewer inflammatory infiltrates in their brains. The cytokines interleukin-1ß, interleukin-12, tumor necrosis factor-α, and reactive oxygen species were absent or reduced in P2rx7-/- mice. Taken together, these data suggest that the P2X7 receptor promotes inflammatory infiltrates, proinflammatory cytokines, and reactive oxygen species production in the brain, and that P2X7 signaling mediates major events that confer resistance to cerebral toxoplasmosis.


Assuntos
Encéfalo/patologia , Suscetibilidade a Doenças , Inflamação/etiologia , Receptores Purinérgicos P2X7/fisiologia , Toxoplasma/patogenicidade , Toxoplasmose Cerebral/etiologia , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/patologia
8.
Metab Brain Dis ; 35(5): 765-774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32189127

RESUMO

During chronic inflammatory disease, such asthma, leukocytes can invade the central nervous system (CNS) and together with CNS-resident cells, generate excessive reactive oxygen species (ROS) production as well as disbalance in the antioxidant system, causing oxidative stress, which contributes a large part to neuroinflammation. In this sense, the aim of this study is to investigate the effects of treatment with neostigmine, known for the ability to control lung inflammation, on oxidative stress in the cerebral cortex of asthmatic mice. Female BALB/cJ mice were submitted to asthma model induced by ovalbumin (OVA). Control group received only Dulbecco's phosphate-buffered saline (DPBS). To evaluate neostigmine effects, mice received 80 µg/kg of neostigmine intraperitoneally 30 min after each OVA challenge. Our results revealed for the first time that treatment with neostigmine (an acetylcholinesterase inhibitor that no crosses the BBB) was able to revert ROS production and change anti-oxidant enzyme catalase in the cerebral cortex in asthmatic mice. These results support the communication between the peripheral immune system and the CNS and suggest that acetylcholinesterase inhibitors, such as neostigmine, should be further studied as possible therapeutic strategies for neuroprotection in asthma.


Assuntos
Asma/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Inibidores da Colinesterase/farmacologia , Neostigmina/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Asma/induzido quimicamente , Asma/patologia , Líquido da Lavagem Broncoalveolar , Catalase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Feminino , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C , Neostigmina/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Ovalbumina , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase-1/metabolismo
10.
Metab Brain Dis ; 33(3): 693-704, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29288365

RESUMO

Although methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 44th day of age. Results showed that MPH provoked hypophosphorylation of glial fibrillary acidic protein (GFAP) and reduced its immunocontent. Middle and high molecular weight neurofilament subunits (NF-M, NF-H) were hypophosphorylated by MPH on KSP repeat tail domains, while NFL, NFM and NFH immunocontents were not altered. MPH increased protein phosphatase 1 (PP1) and 2A (PP2A) immunocontents. MPH also decreased the total content of ganglioside and phospholipid, as well as the main brain gangliosides (GM1, GD1a, and GD1b) and the major brain phospholipids (sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine). Total cholesterol content was also reduced in the hippocampi of juvenile rats treated with MPH. These results provide evidence that disruptions of cytoskeletal and lipid homeostasis in hippocampus of juvenile rats are triggers by chronic MPH treatment and present a new basis for understanding the effects and consequences associated with chronic use of this psychostimulant during the development of the central nervous system.


Assuntos
Citoesqueleto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metilfenidato/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Lipídeos , Masculino , Ratos Wistar
11.
Biochim Biophys Acta ; 1863(12): 3001-3014, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27663072

RESUMO

QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.


Assuntos
Astrócitos/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Microglia/efeitos dos fármacos , Ácido Quinolínico/toxicidade , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Comunicação Celular/efeitos dos fármacos , Técnicas de Cocultura , Conexina 43/genética , Conexina 43/metabolismo , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução , Gravidez , Cultura Primária de Células , Ratos , Ratos Wistar
12.
Pediatr Res ; 82(3): 544-553, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28426648

RESUMO

BackgroundHypoxia-ischemia (HI) is a major cause of neurological damage in preterm newborn. Swimming during pregnancy alters the offspring's brain development. We tested the effects of swimming during pregnancy in the very immature rat brain.MethodsFemale Wistar rats (n=12) were assigned to the sedentary (SE, n=6) or the swimming (SW, n=6) group. From gestational day 0 (GD0) to GD21 the rats in the SW group were made to swim for 20 min/day. HI on postnatal day (PND) 3 rats caused sensorimotor and cognitive impairments. Animals were distributed into SE sham (SESH), sedentary HIP3 (SEHI), swimming sham (SWSH), and swimming HIP3 (SWHI) groups. At PND4 and PND5, Na+/K+-ATPase activity and brain-derived neurotrophic factor (BDNF) levels were assessed. During lactation and adulthood, neurological reflexes, sensorimotor, anxiety-related, and cognitive evaluations were made, followed by histological assessment at PND60.ResultsAt early stages, swimming caused an increase in hippocampal BDNF levels and in the maintenance of Na+/K+-ATPase function in the SWHI group. The SWHI group showed smaller lesions and the preservation of white matter tracts. SEHI animals showed a delay in reflex maturation, which was reverted in the SWHI group. HIP3 induced spatial memory deficits and hypomyelination in SEHI rats, which was reverted in the SWHI group.ConclusionSwimming during pregnancy neuroprotected the brains against HI in very immature neonatal rats.


Assuntos
Hipóxia-Isquemia Encefálica/prevenção & controle , Neuroproteção , Natação , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Lobo Parietal/enzimologia , Gravidez , Ratos , Ratos Wistar , Reflexo , ATPase Trocadora de Sódio-Potássio/metabolismo
13.
Mol Cell Biochem ; 413(1-2): 47-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26738487

RESUMO

The inflammatory cells infiltrating the airways produce several mediators, such as reactive oxygen species (ROS). ROS and the oxidant-antioxidant imbalance might play an important role in the modulation of airways inflammation. In order to avoid the undesirable effects of ROS, various endogenous antioxidant strategies have evolved, incorporating both enzymatic and non-enzymatic mechanisms. Recombinant human deoxyribonuclease (rhDNase) in clinical studies demonstrated a reduction in sputum viscosity, cleaving extracellular DNA in the airways, and facilitating mucus clearance, but an antioxidant effect was not studied so far. Therefore, we evaluated whether the administration of rhDNase improves oxidative stress in a murine model of asthma. Mice were sensitized by two subcutaneous injections of ovalbumin (OVA), on days 0 and 7, followed by three lung challenges with OVA on days 14, 15, and 16. On days 15 and 16, after 2 h of the challenge with OVA, mice received 1 mg/mL of rhDNase in the lungs. Bronchoalveolar lavage fluid and lung tissue were obtained on day 17, for inflammatory and oxidative stress analysis. We showed that rhDNase did not alter the population of inflammatory cells, such as eosinophil cells, in OVA-treated rhDNase group but significantly improved oxidative stress in lung tissue, by decreasing oxygen reactive species and increasing superoxide dismutase/catalase ratio, glutathione peroxidase activity, and thiol content. Our data provide the first evidence that rhDNase decreases some measures of oxidative stress and antioxidant status in a murine model of asthma, with a potential antioxidant effect to be further studied in human asthma.


Assuntos
Asma/imunologia , Desoxirribonucleases/administração & dosagem , Eosinófilos/metabolismo , Pulmão/imunologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Asma/induzido quimicamente , Asma/metabolismo , Líquido da Lavagem Broncoalveolar/química , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ovalbumina/efeitos adversos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Metab Brain Dis ; 29(3): 825-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24810635

RESUMO

The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats.


Assuntos
Trifosfato de Adenosina/metabolismo , Creatina Quinase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipocampo/metabolismo , Ovariectomia , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar , Succinato Desidrogenase/metabolismo
15.
Mol Cell Biochem ; 378(1-2): 91-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23467881

RESUMO

Na(+),K(+)-ATPase is a membrane protein which plays a key role in the maintenance of ion homeostasis that is necessary to neuronal excitability, secondary transport and neurotransmitter uptake. Mild hyperhomocysteinemia leads to several clinical manifestations and particularly cerebral diseases; however, little is known about the mechanisms of homocysteine on cerebral Na(+),K(+)-ATPase. In the present study, we investigated the effect of mild hyperhomocysteinemia on the activity, the immunocontent of catalytic subunits (α1, α2, and α3) and the gene expression of this enzyme. We used the experimental model of mild hyperhomocysteinemia that was induced by homocysteine administration (0.03 µmol/g of body weight) twice a day, from the 30th to the 60th postpartum day. Controls received saline in the same volumes. Results showed that mild hyperhomocysteinemia significantly decreased the activity and the immunocontent of the α 1 and α 2 subunits of the Na(+),K(+)-ATPase in cerebral cortex and hippocampus of adult rats. On the other hand, we did not observe any change in levels of Na(+),K(+)-ATPase mRNA transcripts in such cerebral structures of rats after chronic exposure to homocysteine. The present findings support that the homocysteine modulates the Na(+),K(+)-ATPase and this could be associated, at least in part, with the risk to the development of cerebral diseases in individuals with mild hyperhomocysteinemia.


Assuntos
Córtex Cerebral/enzimologia , Hiper-Homocisteinemia/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Transcrição Gênica , Animais , Western Blotting , Domínio Catalítico , Hipocampo/enzimologia , Homocisteína , Hiper-Homocisteinemia/induzido quimicamente , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/genética
16.
Mol Cell Biochem ; 384(1-2): 21-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23963990

RESUMO

It has been shown that elevation of plasma methionine (Met) and its metabolites may occur in several genetic abnormalities. In this study we investigated the in vitro and in vivo effects of the Met and methionine sulfoxide (MetO) on oxidative stress parameters in the liver of rats. For in vitro studies, liver homogenates were incubated with Met, MetO, and Mix (Met + MetO). For in vivo studies, the animals were divided into groups: saline, Met 0.4 g/kg, MetO 0.1 g/kg, and Met 0.4 g/kg + MetO 0.1 g/kg. The animals were euthanized 1 and 3 h after injection. In vitro results showed that Met 1 and 2 mM and Mix increased catalase (CAT) activity. Superoxide dismutase (SOD) was enhanced by Met 1 and 2 mM, MetO 0.5 mM, and Mix. Dichlorofluorescein oxidation was increased by Met 1 mM and Mix. In vivo results showed that Met, MetO, and Mix decreased TBARS levels at 1 h. Total thiol content decreased 1 h after and increased 3 h after MetO and Met plus MetO administrations. Carbonyl content was enhanced by Met and was reduced by MetO 1 h after administration. Met, MetO and Met plus MetO decreased CAT activity 1 and 3 h after administration. Furthermore, only MetO increased SOD activity. In addition, Met, MetO, and Mix decreased dichlorofluorescein oxidation at 1 and 3 h. Our data indicate that Met/MetO in vivo and in vitro modify liver homeostasis by altering the redox cellular state. However, the hepatic changes caused by these compounds suggest a short-time adaptation of this tissue.


Assuntos
Catalase/metabolismo , Fígado/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Fluoresceínas/metabolismo , Glicina N-Metiltransferase/deficiência , Glicina N-Metiltransferase/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/farmacologia , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
Environ Toxicol Pharmacol ; 101: 104190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37336278

RESUMO

The neonicotinoid imidacloprid was promoted in the market because of widespread resistance to other insecticides, plus its low mammalian impact and higher specific toxicity towards insects. This study aimed to evaluate the immunomodulatory effect of imidacloprid on macrophages. RAW 264.7 cells were incubated to 0-4000 mg/L of imidacloprid for 24 and 96 h. Imidacloprid presented a concentration-dependent cytotoxicity after 24 h and 96 h incubation for MTT reduction (3-(4,5-dimethyl-thiazol-2-yl)- 2,5-diphenyltetrazolium bromide) (EC50 519.6 and 324.6 mg/L, respectively) and Neutral Red (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) assays (EC50 1139.0 and 324.2 mg/L, respectively). Moreover, imidacloprid decreased the cells' inflammatory response and promoted a mitochondrial depolarization. The complex II and succinate dehydrogenase (SDH) activities in RAW 264.7 cells incubated with imidacloprid increased more at 24 h. These results suggest that imidacloprid exerts an immunomodulatory effect and mitochondria can act as regulator of innate immune responses in the cytotoxicity mediated by the insecticide in RAW 264.7 cells.


Assuntos
Inseticidas , Nitrocompostos , Animais , Camundongos , Células RAW 264.7 , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade , Macrófagos , Mamíferos
18.
Artigo em Inglês | MEDLINE | ID: mdl-37317977

RESUMO

We, herein, investigated the in vitro effects of galactose on the activity of pyruvate kinase, succinate dehydrogenase (SDH), complex II and IV (cytochrome c oxidase) of the respiratory chain and Na+K+-ATPase in the cerebral cortex, cerebellum and hippocampus of 30-day-old rats. We also determined the influence of the antioxidants, trolox, ascorbic acid and glutathione, on the effects elicited by galactose. Galactose was added to the assay at concentrations of 0.1, 3.0, 5.0 and 10.0 mM. Control experiments were performed without galactose. Galactose, at 3.0, 5.0 and 10.0 mM, decreased pyruvate kinase activity in the cerebral cortex and at 10.0 mM in the hippocampus. Galactose, at 10.0 mM, reduced SDH and complex II activities in the cerebellum and hippocampus, and reduced cytochrome c oxidase activity in the hippocampus. Additionally, decreased Na+K+-ATPase activity in the cerebral cortex and hippocampus; conversely, galactose, at 3.0 and 5.0 mM, increased this enzyme's activity in the cerebellum. Data show that galactose disrupts energy metabolism and trolox, ascorbic acid and glutathione addition prevented the majority of alterations in the parameters analyzed, suggesting the use of antioxidants as an adjuvant therapy in Classic galactosemia.


Assuntos
Antioxidantes , Galactose , Ratos , Animais , Antioxidantes/farmacologia , Galactose/metabolismo , Galactose/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Ratos Wistar , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Glutationa/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia
19.
Neurochem Res ; 37(8): 1660-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22484967

RESUMO

This study investigated the effects of chronic homocysteine administration on some parameters of inflammation, such as cytokines (TNF-α, IL-1ß and IL-6), chemokine CCL(2) (MCP-1), nitrite and prostaglandin E(2) levels, as well as on immunocontent of NF-κB/p65 subunit in hippocampus and/or serum of rats. Since acetylcholinesterase has been associated with inflammation, we also evaluated the effect of homocysteine on this enzyme activity in hippocampus of rats. Wistar rats received daily subcutaneous injections of homocysteine (0.3-0.6 µmol/g body weight) or saline (control) from the 6th to the 28th days-of-age. One or 12 h after the last injection, rats were euthanized and hippocampus and serum were used. Results showed that chronic hyperhomocysteinemia significantly increased pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6), chemokine CCL(2) (MCP-1) and prostaglandin E(2) in hippocampus and serum of rats at 1 and 12 h after the last injection of homocysteine. Nitrite levels increased in hippocampus, but decreased in serum at 1 h after chronic hyperhomocysteinemia. Acetylcholinesterase activity and immunocontent of citoplasmic and nuclear NF-κB/p65 subunit were increased in hippocampus of rats subjected to hyperhomocysteinemia at 1 h, but did not alter at 12 h after the last injection of homocysteine. According to our results, chronic hyperhomocysteinemia increases inflammatory parameters, suggesting that this process might be associated, at least in part, with the cerebrovascular and vascular dysfunctions characteristic of some homocystinuric patients.


Assuntos
Biomarcadores/sangue , Hipocampo/metabolismo , Hiper-Homocisteinemia/sangue , Acetilcolinesterase/sangue , Animais , Quimiocina CCL2/sangue , Dinoprostona/sangue , Homocistinúria/complicações , Homocistinúria/fisiopatologia , Interleucina-1beta/sangue , Interleucina-6/sangue , Nitritos/sangue , Ratos , Ratos Wistar , Fator de Transcrição RelA/sangue , Fator de Necrose Tumoral alfa/sangue
20.
J Neural Transm (Vienna) ; 119(6): 661-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22143406

RESUMO

Schizophrenia is a debilitating mental disorder with a global prevalence of 1% and its etiology remains poorly understood. In the current study we investigated the influence of antipsychotic drugs on the effects of MK-801 administration, which is a drug that mimics biochemical changes observed in schizophrenia, on Na(+), K(+)-ATPase activity and some parameters of oxidative stress in zebrafish brain. Our results showed that MK-801 treatment significantly decreased Na(+), K(+)-ATPase activity, and all antipsychotics tested prevented such effects. Acute MK-801 treatment did not alter reactive oxygen/nitrogen species by 2'7'-dichlorofluorscein (H2DCF) oxidation assay, but increased the levels of thiobarbituric acid reactive substances (TBARS), when compared with controls. Some antipsychotics such as sulpiride, olanzapine, and haloperidol prevented the increase of TBARS caused by MK-801. These findings indicate oxidative damage might be a mechanism involved in the decrease of Na(+), K(+)-ATPase activity induced by MK-801. The parameters evaluated in this study had not yet been tested in this animal model using the MK-801, suggesting that zebrafish is an animal model that can contribute for providing information on potential treatments and disease characteristics.


Assuntos
Antipsicóticos/farmacologia , Química Encefálica/efeitos dos fármacos , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Peixe-Zebra/metabolismo , Animais , Benzodiazepinas/farmacologia , Feminino , Fluoresceínas/metabolismo , Haloperidol/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Membranas/efeitos dos fármacos , Membranas/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Olanzapina , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulpirida/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa