Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Biol ; 20(1): 38, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135533

RESUMO

BACKGROUND: Most of the known genes required for developmental processes have been identified by genetic screens in a few well-studied model organisms, which have been considered representative of related species, and informative-to some degree-for human biology. The fruit fly Drosophila melanogaster is a prime model for insect genetics, and while conservation of many gene functions has been observed among bilaterian animals, a plethora of data show evolutionary divergence of gene function among more closely-related groups, such as within the insects. A quantification of conservation versus divergence of gene functions has been missing, without which it is unclear how representative data from model systems actually are. RESULTS: Here, we systematically compare the gene sets required for a number of homologous but divergent developmental processes between fly and beetle in order to quantify the difference of the gene sets. To that end, we expanded our RNAi screen in the red flour beetle Tribolium castaneum to cover more than half of the protein-coding genes. Then we compared the gene sets required for four different developmental processes between beetle and fly. We found that around 50% of the gene functions were identified in the screens of both species while for the rest, phenotypes were revealed only in fly (~ 10%) or beetle (~ 40%) reflecting both technical and biological differences. Accordingly, we were able to annotate novel developmental GO terms for 96 genes studied in this work. With this work, we publish the final dataset for the pupal injection screen of the iBeetle screen reaching a coverage of 87% (13,020 genes). CONCLUSIONS: We conclude that the gene sets required for a homologous process diverge more than widely believed. Hence, the insights gained in flies may be less representative for insects or protostomes than previously thought, and work in complementary model systems is required to gain a comprehensive picture. The RNAi screening resources developed in this project, the expanding transgenic toolkit, and our large-scale functional data make T. castaneum an excellent model system in that endeavor.


Assuntos
Besouros , Tribolium , Animais , Besouros/genética , Drosophila , Drosophila melanogaster/genética , Pupa , Interferência de RNA , Tribolium/genética
2.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937263

RESUMO

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Assuntos
Genes de Insetos , Genoma de Inseto , Genômica , Tribolium/genética , Animais , Sítios de Ligação , Biologia Computacional/métodos , Genômica/métodos , MicroRNAs/genética , Anotação de Sequência Molecular , Filogenia , Interferência de RNA , Reprodutibilidade dos Testes
3.
Development ; 144(7): 1339-1349, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28232603

RESUMO

Terminal regions of the Drosophila embryo are patterned by the localized activation of the Torso-RTK pathway, which promotes the downregulation of Capicua. In the short-germ beetle Tribolium, the function of the terminal system appears to be rather different, as the pathway promotes axis elongation and, in addition, is required for patterning the extra-embryonic serosa at the anterior. Here, we show that Torso signalling also induces gene expression by relieving Capicua-mediated repression in Tribolium Given that the majority of Torso target genes remain to be identified, we established a differential gene-expression screen. A subset of 50 putative terminal target genes was screened for functions in early embryonic patterning. Of those, 13 genes show early terminal expression domains and also phenotypes were related to terminal patterning. Among others, we found the PIWI-interacting RNA factor Maelstrom to be crucial for early embryonic polarization. Tc-mael is required for proper serosal size regulation and head morphogenesis. Moreover, Tc-mael promotes growth-zone formation and axis elongation. Our results suggest that posterior patterning by Torso may be realized through Maelstrom-dependent activation of posterior Wnt domains.


Assuntos
Padronização Corporal/genética , Farinha/parasitologia , Genes de Insetos , Proteínas de Insetos/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Tribolium/embriologia , Tribolium/genética , Animais , Embrião não Mamífero/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Imageamento Tridimensional , Proteínas de Insetos/metabolismo , Fenótipo , Interferência de RNA , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
4.
Front Zool ; 14: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533810

RESUMO

BACKGROUND: Stem cells are undifferentiated cells with a potential for self-renewal, which are essential to support normal development and homeostasis. To gain insight into the molecular mechanisms underlying adult stem cell biology and organ evolution, we use the telotrophic ovary of the beetle Tribolium. To this end, we participated in a large-scale RNAi screen in the red flour beetle Tribolium, which identified functions in embryonic and postembryonic development for more than half of the Tribolium genes. RESULTS: We identified TC003132 as candidate gene for the follicle stem cell linage in telotrophic Tribolium oogenesis. TC003132 belongs to the Casein Kinase 2 substrate family (CK2S), which in humans is associated with the proliferative activity of different cancers. Upon TC003132 RNAi, central pre-follicular cells are lost, which results in termination of oogenesis. Given that also Notch-signalling is required to promote the mitotic activity of central pre-follicular cells, we performed epistasis experiments with Notch and cut. In addition, we identified a putative follicle stem cell population by monitoring the mitotic pattern of wild type and TC003132 depleted follicle cells by EdU incorporations. In TC003132 RNAi these putative FSCs cease the expression of differentiation makers and are eventually lost. CONCLUSIONS: TC003132 depleted pre-follicular cells neither react to mitosis or endocycle stimulating signals, suggesting that TC003132 provides competence for differentiation cues. This may resemble the situation in C. elegans were CK2 is required to maintain the balance between proliferation and differentiation in the germ line. Since the earliest effect of TC003132 RNAi is characterized by the loss of putative FSCs, we posit that TC003132 crucially contributes to the proliferation or maintenance of follicle stem cells in the telotrophic Tribolium ovary.

5.
Nucleic Acids Res ; 43(Database issue): D720-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378303

RESUMO

The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.


Assuntos
Bases de Dados Genéticas , Genes de Insetos , Interferência de RNA , Tribolium/genética , Animais , Feminino , Internet , Fenótipo , Tribolium/anatomia & histologia , Tribolium/embriologia , Interface Usuário-Computador
6.
J Biol Chem ; 288(25): 18013-21, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23645668

RESUMO

Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Tribolium/metabolismo , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Antígenos CD13/genética , Antígenos CD13/metabolismo , Caderinas/genética , Caderinas/metabolismo , Endotoxinas/genética , Epitopos/genética , Epitopos/metabolismo , Proteínas Hemolisinas/genética , Immunoblotting , Proteínas de Insetos/genética , Dados de Sequência Molecular , Ligação Proteica , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Tribolium/genética
7.
Dev Biol ; 364(2): 224-35, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22326441

RESUMO

Abdominal patterning in Drosophila requires the function of Nanos (nos) and Pumilio (pum) to repress posterior translation of hunchback mRNA. Here we provide the first functional analysis of nanos and pumilio genes during blastodermal patterning of a short-germ insect. We found that nos and pum in the red flour beetle Tribolium castaneum crucially contribute to posterior segmentation by preventing hunchback translation. While this function seems to be conserved among insects, we provide evidence that Nos and Pum may also act on giant expression, another gap gene. After depletion of nos and pum by parental RNAi, Hunchback and giant remain ectopically at the posterior blastoderm and the posterior Krüppel (Kr) domain is not being activated. giant may be a direct target of Nanos and Pumilio in Tribolium and presumably prevents early Kr expression. In the absence of Kr, the majority of secondary gap gene domains fail to be activated, and abdominal segmentation is terminated prematurely. Surprisingly, we found Nos and Pum also to be involved in early head patterning, as the loss of Nos and Pum results in deletions and transformations of gnathal and pre-gnathal anlagen. Since the targets of Nos and Pum in head development remain to be identified, we propose that anterior patterning in Tribolium may involve additional maternal factors.


Assuntos
Padronização Corporal , Proteínas de Ligação a RNA/genética , Tribolium/embriologia , Animais , Blastoderma/embriologia , Blastoderma/crescimento & desenvolvimento , Blastoderma/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/embriologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Development ; 137(11): 1853-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20431120

RESUMO

In the short-germ beetle Tribolium castaneum, the head gap gene orthodenticle (Tc-otd) has been proposed to functionally substitute for bicoid, the anterior morphogen unique to higher dipterans. In this study we reanalyzed the function of Tc-otd. We obtained a similar range of cuticle phenotypes as in previously described RNAi experiments; however, we noticed unexpected effects on blastodermal cell fates. First, we found that Tc-otd is essential for dorsoventral patterning. RNAi depletion results in lateralized embryos, a fate map change that by itself can explain the observed loss of the anterior head, which is a ventral anlage in Tribolium. We find that this effect is due to diminished expression of short gastrulation (sog), a gene essential for establishment of the Decapentaplegic (Dpp) gradient in this species. Second, we found that gnathal segment primordia in Tc-otd RNAi embryos are shifted anteriorly but otherwise appear patterned normally. This anteroposterior (AP) fate map shift might largely be due to diminished zen-1 expression and is not responsible for the severe segmentation defects observed in some Tc-otd RNAi embryos. As neither Tc-sog nor Tc-zen-1 probably requires Otd gradient-mediated positional information, we posit that the blastoderm function of Tc-Otd depends on its initial homogeneous maternal expression and that this maternal factor does not provide significant positional information for Tribolium blastoderm embryos.


Assuntos
Tribolium/embriologia , Tribolium/genética , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Genes de Insetos , Fenótipo , Interferência de RNA , Tribolium/citologia
9.
Dev Biol ; 350(1): 169-82, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20974121

RESUMO

In Drosophila, the JAK-STAT signalling pathway regulates a broad array of developmental functions including segmentation and oogenesis. Here we analysed the functions of Tribolium JAK-STAT signalling factors and of Suppressor Of Cytokine Signalling (SOCS) orthologues, which are known to function as negative regulators of JAK-STAT signalling, during telotrophic oogenesis and short-germ embryogenesis. The beetle Tribolium features telotrophic ovaries, which differ fundamentally from the polytrophic ovary of Drosophila. While we found the requirement for JAK-STAT signalling in specifying the interfollicular stalk to be principally conserved, we demonstrate that these genes also have early and presumably telotrophic specific functions. Moreover, we show that the SOCS genes crucially contribute to telotrophic Tribolium oogenesis, as their inactivation by RNAi results in compound follicles. During short-germ embryogenesis, JAK-STAT signalling is required in the maintenance of segment primordia, indicating that this signalling cascade acts in the framework of the segment-polarity network. In addition, we demonstrate that JAK-STAT signalling crucially contributes to early anterior patterning. We posit that this signalling cascade is involved in achieving accurate levels of expression of individual pair-rule and gap gene domains in early embryonic patterning.


Assuntos
Padronização Corporal , Desenvolvimento Embrionário , Janus Quinases/metabolismo , Oogênese , Folículo Ovariano/embriologia , Fatores de Transcrição STAT/metabolismo , Tribolium/embriologia , Animais , Feminino , Janus Quinases/genética , Oócitos/metabolismo , Oócitos/fisiologia , Folículo Ovariano/metabolismo , Fatores de Transcrição STAT/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Tribolium/genética , Tribolium/metabolismo
10.
Front Zool ; 9(1): 15, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22866820

RESUMO

INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal/stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Triboliumis necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflectthe ancestral function of Notch-signaling in insect oogenesis.The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.

11.
Curr Biol ; 15(23): 2131-6, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16332539

RESUMO

In the long germ insect Drosophila, all body segments are determined almost simultaneously at the blastoderm stage under the control of the anterior, the posterior, and the terminal genetic system . Most other arthropods (and similarly also vertebrates) develop more slowly as short germ embryos, where only the anterior body segments are specified early in embryogenesis. The body axis extends later by the sequential addition of new segments from the growth zone or the tail bud . The mechanisms that initiate or maintain the elongation of the body axis (axial growth) are poorly understood . We functionally analyzed the terminal system in the short germ insect Tribolium. Unexpectedly, Torso signaling is required for setting up or maintaining a functional growth zone and at the anterior for the extraembryonic serosa. Thus, as in Drosophila, fates at both poles of the blastoderm embryo depend on terminal genes, but different tissues are patterned in Tribolium. Short germ development as seen in Tribolium likely represents the ancestral mode of how the primary body axis is set up during embryogenesis. We therefore conclude that the ancient function of the terminal system mainly was to define a growth zone and that in phylogenetically derived insects like Drosophila, Torso signaling became restricted to the determination of terminal body structures.


Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Tribolium/embriologia , Animais , Sequência de Bases , Proteínas de Drosophila/genética , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de DNA , Especificidade da Espécie , Tribolium/genética
12.
Front Zool ; 4: 10, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17355624

RESUMO

BACKGROUND: Hox genes are expressed in specific domains along the anterior posterior body axis and define the regional identity. In most animals these genes are organized in a single cluster in the genome and the order of the genes in the cluster is correlated with the anterior to posterior expression of the genes in the embryo. The conserved order of the various Hox gene orthologs in the cluster among most bilaterians implies that such a Hox cluster was present in their last common ancestor. Vertebrates are the only metazoans so far that have been shown to contain duplicated Hox clusters, while all other bilaterians seem to possess only a single cluster. RESULTS: We here show that at least three Hox genes of the spider Cupiennius salei are present as two copies in this spider. In addition to the previously described duplicated Ultrabithorax gene, we here present sequence and expression data of a second Deformed gene, and of two Sex comb reduced genes. In addition, we describe the sequence and expression of the Cupiennius proboscipedia gene. The spider Cupiennius salei is the first chelicerate for which orthologs of all ten classes of arthropod Hox genes have been described. The posterior expression boundary of all anterior Hox genes is at the tagma border of the prosoma and opisthosoma, while the posterior boundary of the posterior Hox genes is at the posterior end of the embryo. CONCLUSION: The presence of at least three duplicated Hox genes points to a major duplication event in the lineage to this spider, perhaps even of the complete Hox cluster as has taken place in the lineage to the vertebrates. The combined data of all Cupiennius Hox genes reveal the existence of two distinct posterior expression boundaries that correspond to morphological tagmata boundaries.

13.
Nat Commun ; 6: 7822, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215380

RESUMO

Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Oogênese/genética , Interferência de RNA , Tribolium/genética , Animais , Besouros/embriologia , Besouros/genética , Besouros/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Larva/genética , Pupa/genética , Tribolium/embriologia , Tribolium/fisiologia
14.
Curr Biol ; 19(21): 1811-5, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19818622

RESUMO

Posterior expression of Caudal is required for early embryonic development in nematodes, arthropods, and vertebrates. In Drosophila, ectopic Caudal in anterior cells can induce head defects, and in Caenorhabditis the absence of Caudal in anterior embryonic cells is required for proper development. Anterior Caudal repression in these species is achieved through unrelated translational repressors, the homeodomain protein Bicoid and the KH domain factor Mex-3, respectively. Here we report that the Mex-3 ortholog in the flour beetle Tribolium plays a crucial role in head formation and that Caudal in this species is repressed by the combined activities of Mex-3 and Zen-2, a protein sharing common ancestry with the dipteran morphogen Bicoid. We propose that Mex-3 represents an ancient "anterior" promoting factor common to all Ecdysozoa (and maybe all Bilateria), whose role has been usurped in higher dipterans by Bicoid.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/embriologia , Proteínas de Homeodomínio/fisiologia , Proteínas de Insetos/fisiologia , Tribolium/embriologia , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Tribolium/genética , Tribolium/metabolismo
15.
CSH Protoc ; 2008: pdb.emo103, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356686

RESUMO

INTRODUCTIONThe spider Cupiennius salei is a useful laboratory model for embryological and physiological studies. Its highly developed sensory organs also make it an excellent model for behavioral studies. Furthermore, Cupiennius has contributed greatly to the study of evolutionary developmental questions. This chelicerate arthropod is particularly useful for such studies because of its phylogenetic position and the availability of tools to study and manipulate its embryonic development.

16.
CSH Protoc ; 2008: pdb.prot5067, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356698

RESUMO

INTRODUCTIONThe spider Cupiennius salei, commonly known as the American wandering spider, is a particularly useful laboratory model for embryological studies because of the availability of tools to study and manipulate its embryonic development. Cupiennius is used to study axis formation, segmentation, appendage development, neurogenesis, and silk production. These studies contribute to our understanding of the evolution of these processes, but they also help us to understand the origin and diversification of evolutionary novelties. Comparisons between spiders and insects can show the degree of conservation and divergence of developmental mechanisms during arthropod evolution. Any embryological feature conserved between spiders and insects is likely to represent an ancestral feature for arthropods. Comparative molecular embryological work in insects and spiders should eventually allow us to define a molecular archetype for the phylum Arthropoda. This in itself will be a necessary cornerstone for comparing the different metazoan phyla, including chordates. This protocol describes the collection and fixation of embryos from C. salei. The fixed embryos can be stored at -20°C for prolonged periods and used for in situ hybridization, in studies of apoptosis using terminal deoxynucleotidyl-transferase-mediated dUTP-digoxigenin nick-end labeling (TUNEL), and for immunohistochemistry.

17.
CSH Protoc ; 2008: pdb.prot5068, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356699

RESUMO

INTRODUCTIONThe spider Cupiennius salei, commonly known as the American wandering spider, is a particularly useful laboratory model for embryological studies because of the availability of tools to study and manipulate its embryonic development. Cupiennius is used to study axis formation, segmentation, appendage development, neurogenesis, and silk production. These studies contribute to our understanding of the evolution of these processes, but they also help us to understand the origin and diversification of evolutionary novelties. Comparisons between spiders and insects can show the degree of conservation and divergence of developmental mechanisms during arthropod evolution. Any embryological feature conserved between spiders and insects is likely to represent an ancestral feature for arthropods. Comparative molecular embryological work in insects and spiders should eventually allow us to define a molecular archetype for the phylum Arthropoda. This in itself will be a necessary cornerstone for comparing the different metazoan phyla, including chordates. This protocol describes the detection of transcripts in fixed C. salei embryos using whole-mount in situ hybridization.

18.
CSH Protoc ; 2008: pdb.prot5069, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356700

RESUMO

INTRODUCTIONThe spider Cupiennius salei, commonly known as the American Wandering Spider, is a particularly useful laboratory model for embryological studies because of the availability of tools to study and manipulate its embryonic development. Cupiennius is used to study axis formation, segmentation, appendage development, neurogenesis, and silk production. These studies contribute to our understanding of the evolution of these processes, but they also help us to understand the origin and diversification of evolutionary novelties. Comparisons between spiders and insects can show the degree of conservation and divergence of developmental mechanisms during arthropod evolution. Any embryological feature conserved between spiders and insects is likely to represent an ancestral feature for arthropods. Comparative molecular embryological work in insects and spiders should eventually allow us to define a molecular archetype for the phylum Arthropoda. This in itself will be a necessary cornerstone for comparing the different metazoan phyla, including chordates. A feature of apoptosis (i.e., cell death) is the cleavage or fragmentation of DNA that occurs in dead or dying cells. This protocol describes the detection of fragmented DNA in whole-mount Cupiennius embryos. The 3'-OH ends of these DNA fragments can be labeled with the terminal deoxynucleotidyl-transferase-mediated dUTP-digoxigenin nick-end labeling (TUNEL) technique. This protocol uses a terminal deoxynucleotidyl transferase to add labeled dUTP to the fragmented DNA, and this label is then detected by immunocytochemistry. The TUNEL technique is a relatively easy way to obtain a reliable picture of the cell death pattern during normal and abnormal development.

19.
CSH Protoc ; 2008: pdb.prot5070, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356701

RESUMO

INTRODUCTIONThe spider Cupiennius salei, commonly known as the American wandering spider, is a particularly useful laboratory model for embryological studies because of the availability of tools to study and manipulate its embryonic development. Cupiennius is used to study axis formation, segmentation, appendage development, neurogenesis, and silk production. These studies contribute to our understanding of the evolution of these processes, but they also help us to understand the origin and diversification of evolutionary novelties. Comparisons between spiders and insects can show the degree of conservation and divergence of developmental mechanisms during arthropod evolution. Any embryological feature conserved between spiders and insects is likely to represent an ancestral feature for arthropods. Comparative molecular embryological work in insects and spiders should eventually allow us to define a molecular archetype for the phylum Arthropoda. This in itself will be a necessary cornerstone for comparing the different metazoan phyla, including chordates. The discovery of RNA interference (RNAi), in which double-stranded RNA (dsRNA) suppresses the translation of homologous mRNA, has had a huge impact on evolutionary developmental biology by enabling the analysis of loss-of-function phenotypes in organisms in which classical genetic analysis is laborious or not possible. This protocol describes the application of RNAi to embryos of the spider C. salei.

20.
CSH Protoc ; 2008: pdb.prot5071, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356702

RESUMO

INTRODUCTIONThe spider Cupiennius salei, commonly known as the American wandering spider, is particularly useful for embryological studies because of the availability of tools to study and manipulate its embryonic development. Cupiennius is used to study axis formation, segmentation, appendage development, neurogenesis, and silk production. These studies contribute to our understanding of the evolution of these processes, but they also help us to understand the origin and diversification of evolutionary novelties. Comparisons between spiders and insects can show the degree of conservation and divergence of developmental mechanisms during arthropod evolution. Any embryological feature conserved between spiders and insects is likely to represent an ancestral feature for arthropods. Comparative molecular embryological work in insects and spiders should eventually allow us to define a molecular archetype for the phylum Arthropoda. This will be a necessary cornerstone for comparing the different metazoan phyla, including chordates. This protocol describes the detection of proliferating cells in whole-mount Cupiennius embryos. When labeled nucleotides are introduced into mitotically dividing cells, these cells incorporate the labels into the newly synthesized DNA. Thus, only cells that have synthesized DNA after the addition of the label will be detected. This protocol uses 5-bromo-2'-deoxy-uridine (BrdU) as a label that is subsequently detected by immunocytochemistry. BrdU labeling is a relatively easy way to detect cells that have recently synthesized DNA. The main advantage of this technique is that the label accumulates over time and, by varying the incubation time before fixation, an increasingly cumulative picture of cell proliferation activity can be obtained.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa