Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(31): 9511-7, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26178196

RESUMO

Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth's store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth's battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.


Assuntos
Planeta Terra , Ecossistema , Meio Ambiente Extraterreno , Previsões , Biomassa , Fósseis , Humanos , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 112(8): 2617-22, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25624499

RESUMO

Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude-from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers-as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.


Assuntos
Ecossistema , Metabolismo , Modelos Biológicos , Carbono/metabolismo , Ciclo do Carbono , Simulação por Computador , Humanos , Modelos Lineares , Nitrogênio/metabolismo , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Fatores de Tempo
3.
Ecol Appl ; 23(6): 1396-409, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24147411

RESUMO

Hydrologic connectivity is critical to the structure, function, and dynamic process of river ecosystems. Dams, road crossings, and water diversions impact connectivity by altering flow regimes, behavioral cues, local geomorphology, and nutrient cycling. This longitudinal fragmentation of river ecosystems also increases genetic and reproductive isolation of aquatic biota such as migratory fishes. The cumulative effects on fish passage of many structures along a river are often substantial, even when individual barriers have negligible impact. Habitat connectivity can be improved through dam removal or other means of fish passage improvement (e.g., ladders, bypasses, culvert improvement). Environmental managers require techniques for comparing alternative fish passage restoration actions at alternative or multiple locations. Herein, we examined a graph-theoretic algorithm for assessing upstream habitat connectivity to investigate both basic and applied fish passage connectivity problems. First, we used hypothetical watershed configurations to assess general alterations to upstream fish passage connectivity with changes in watershed network topology (e.g., linear vs. highly dendritic) and the quantity, location, and passability of each barrier. Our hypothetical network modeling indicates that locations of dams with limited passage efficiency near the watershed outlet create a strong fragmentation signal but are not individually sufficient to disconnect the system. Furthermore, there exists a threshold in the number of dams beyond which connectivity declines precipitously, regardless of watershed topology and dam configuration. Watersheds with highly branched configurations are shown to be less susceptible to disconnection as measured by this metric. Second, we applied the model to prioritize barrier improvement in the mainstem of the Truckee River, Nevada, USA. The Truckee River application demonstrates the ability of the algorithm to address conditions common in fish passage projects including incomplete data, parameter uncertainty, and rapid application. This study demonstrates the utility of a graph-theoretic approach for assessing fish passage connectivity in dendritic river networks assuming full basin utilization for a given species, guild, or community of concern.


Assuntos
Migração Animal/fisiologia , Monitoramento Ambiental , Peixes/fisiologia , Modelos Biológicos , Animais , California , Simulação por Computador , Nevada , Movimentos da Água
4.
J Environ Manage ; 97: 148-53, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22281948

RESUMO

Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations.


Assuntos
Clima , Conservação de Recursos Energéticos/métodos , Modelos Teóricos , Códigos de Obras , Materiais de Construção , Habitação
5.
Heliyon ; 8(6): e09647, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35711996

RESUMO

Efforts to accommodate the growth in global energy consumption within a fragile biosphere are primarily focused on managing the transition towards a low-carbon energy mix. We show evidence that a more fundamental problem exists through a scaling relation, akin to Kleiber's Law, between society's energy consumption and material stocks. Humanity's energy consumption scales at 0.78 of its material stocks, which implies predictable environmental pressure regardless of the energy mix. If true, future global energy scenarios imply vast amounts of materials and corresponding environmental degradation, which have not been adequately acknowledged. Thus, limits to energy consumption are needed regardless of the energy mix to stabilize human intervention in the biosphere.

6.
Nat Commun ; 9(1): 23, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295998

RESUMO

Size generally dictates metabolic requirements, trophic level, and consequently, ecosystem structure, where inefficient energy transfer leads to bottom-heavy ecosystem structure and biomass decreases as individual size (or trophic level) increases. However, many animals deviate from simple size-based predictions by either adopting generalist predatory behavior, or feeding lower in the trophic web than predicted from their size. Here we show that generalist predatory behavior and lower trophic feeding at large body size increase overall biomass and shift ecosystems from a bottom-heavy pyramid to a top-heavy hourglass shape, with the most biomass accounted for by the largest animals. These effects could be especially dramatic in the ocean, where primary producers are the smallest components of the ecosystem. This approach makes it possible to explore and predict, in the past and in the future, the structure of ocean ecosystems without biomass extraction and other impacts.


Assuntos
Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Modelos Biológicos , Animais , Antozoários/classificação , Antozoários/fisiologia , Biomassa , Tamanho Corporal , Comportamento Alimentar/fisiologia , Pesqueiros/estatística & dados numéricos , Pesqueiros/tendências , Peixes/classificação , Oceanos e Mares , Plâncton/classificação , Plâncton/fisiologia , Dinâmica Populacional , Comportamento Predatório/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa