Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(6): 1390-400, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034256

RESUMO

Dysfunction of ENaC, the epithelial sodium channel that regulates salt and water reabsorption in epithelia, causes several human diseases, including cystic fibrosis (CF). To develop a global understanding of molecular regulators of ENaC traffic/function and to identify of candidate CF drug targets, we performed a large-scale screen combining high-content live-cell microscopy and siRNAs in human airway epithelial cells. Screening over 6,000 genes identified over 1,500 candidates, evenly divided between channel inhibitors and activators. Genes in the phosphatidylinositol pathway were enriched on the primary candidate list, and these, along with other ENaC activators, were examined further with secondary siRNA validation. Subsequent detailed investigation revealed ciliary neurotrophic factor receptor (CNTFR) as an ENaC modulator and showed that inhibition of (diacylglycerol kinase, iota) DGKι, a protein involved in PiP2 metabolism, downgrades ENaC activity, leading to normalization of both Na+ and fluid absorption in CF airways to non-CF levels in primary human lung cells from CF patients.


Assuntos
Fibrose Cística/tratamento farmacológico , Terapia de Alvo Molecular , Linhagem Celular , Células Cultivadas , Canais Epiteliais de Sódio/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , RNA Interferente Pequeno
2.
Pflugers Arch ; 476(2): 211-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979051

RESUMO

Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.


Assuntos
Asma , COVID-19 , Camundongos , Animais , Anoctamina-1/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Anoctaminas/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Canais de Cloreto/metabolismo
3.
FASEB J ; 37(1): e22683, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520003

RESUMO

SIGIRR (single immunoglobulin IL-1 related receptor), PKP3 (plakophilin 3), and TMEM16J (anoctamin 9), a putative calcium-activated ion channel and phospholipid scramblase, control the immune response and the extent of inflammation. Variants of SIGIRR/PKP3/TMEM16J lead to severe inflammatory diseases such as pneumonia, enterocolitis, and kidney graft rejection. Meta-analysis of genome-wide association studies identified TMEM16J-T604A as a promotor for chronic kidney disease (CKD), but the disease mechanism and function of TMEM16J remain unknown. Here, we demonstrate TMEM16J as a calcium-activated calcium-permeable channel, which is expressed in the endoplasmic reticulum (ER). TMEM16J controls the intracellular distribution of calcium, and inhibits intracellular receptor-mediated Ca2+ signals and Ca2+ -dependent activation of ion channels, but augments transcription and release of pro-inflammatory cytokines. Renal epithelial cells expressing the variant TMEM16J-T604A show enhanced calcium signals when compared to cells expressing wt-TMEM16J, and demonstrate spontaneous transcription and release of cytokines. This study identifies TMEM16J as an important regulator of intracellular Ca2+ signals, ion channel activity, and cytokine release. TMEM16J may therefore affect immune response in renal tissue and immune cells.


Assuntos
Cálcio , Estudo de Associação Genômica Ampla , Cálcio/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Canais de Cálcio/metabolismo , Receptores de Interleucina-1/genética , Citocinas , Sinalização do Cálcio/fisiologia
4.
Brain ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079528

RESUMO

Anoctamin 3 (ANO3) belongs to a family of transmembrane proteins that form phospholipid scramblases and ion channels. A large number of ANO3 variants were identified as the cause of craniocervical dystonia, but the underlying pathogenic mechanisms remain obscure. It was suggested that ANO3 variants may dysregulate intracellular Ca2+ signalling, as variants in other Ca2+ regulating proteins like hippocalcin were also identified as a cause of dystonia. In this study, we conducted a comprehensive evaluation of the clinical, radiological, and molecular characteristics of four individuals from four families who carried heterozygous variants in ANO3. The median age at follow-up was 6.6 years (ranging from 3.8 to 8.7 years). Three individuals presented with hypotonia and motor developmental delay. Two patients exhibited generalized progressive dystonia, while one patient presented with paroxysmal dystonia. Additionally, another patient exhibited early dyskinetic encephalopathy. One patient underwent bipallidal deep brain stimulation (DBS) and showed a mild but noteworthy response, while another patient is currently being considered for DBS treatment. Neuroimaging analysis of brain MRI studies did not reveal any specific abnormalities. The molecular spectrum included two novel ANO3 variants (V561L and S116L) and two previously reported ANO3 variants (A599D and S651N). As anoctamins are suggested to affect intracellular Ca2+ signals, we compared Ca2+ signalling and activation of ion channels in cells expressing wild type ANO3 and cells expressing ANO variants. Novel V561L and S116L variants were compared with previously reported A599D and S651N variants and with wtANO3 expressed in fibroblasts isolated from patients or when overexpressed in HEK293 cells. We identified ANO3 as a Ca2+-activated phospholipid scramblase that also conducts ions. Impaired Ca2+ signalling and compromised activation of Ca2+ dependent K+ channels were detected in cells expressing ANO3 variants. In the brain striatal cells of affected patients, impaired activation of KCa3.1 channels due to compromised Ca2+ signals may lead to depolarized membrane voltage and neuronal hyperexcitability and may also lead to reduced cellular viability, as shown in the present study. In conclusion, our study reveals the association between ANO3 variants and paroxysmal dystonia, representing the first reported link between these variants and this specific dystonic phenotype. We demonstrate that ANO3 functions as a Ca2+-activated phospholipid scramblase and ion channel; cells expressing ANO3 variants exhibit impaired Ca2+ signalling and compromised activation of Ca2+-dependent K+ channels. These findings provide a mechanism for the observed clinical manifestations and highlight the importance of ANO3 for neuronal excitability and cellular viability.

5.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337485

RESUMO

Anoctamin 6 (ANO6, TMEM16F) is a phospholipid (PL) scramblase that moves PLs between both plasma membrane (PM) leaflets and operates as an ion channel. It plays a role in development and is essential for hemostasis, bone mineralization and immune defense. However, ANO6 has also been shown to regulate cellular Ca2+ signaling and PM compartments, thereby controlling the expression of ion channels such as CFTR. Given these pleiotropic effects, we investigated the functional interdependence of the ubiquitous ANO6 with other commonly co-expressed anoctamins. As most expression studies on anoctamins use HEK293 human embryonic kidney cells, we compared ion currents, PL scrambling and Ca2+ signals induced by the overexpression of anoctamins in HEK293 wild-type parental and ANO6-knockout cells. The data suggest that the endogenous expression of ANO6 significantly affects the results obtained from overexpressed anoctamins, particularly after increasing intracellular Ca2+. Thus, a significant interdependence of anoctamins may influence the interpretation of data obtained from the functional analysis of overexpressed anoctamins.


Assuntos
Anoctaminas , Cálcio , Proteínas de Transferência de Fosfolipídeos , Humanos , Anoctaminas/metabolismo , Anoctaminas/genética , Células HEK293 , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo
6.
Pflugers Arch ; 475(8): 995-1007, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442855

RESUMO

The TMEM16A (ANO1) Cl- channel is activated by Ca2+ in a voltage-dependent manner. It is broadly expressed and was shown to be also present in renal proximal tubule (RPT). KCNQ1 is an entirely different K+ selective channel that forms the cardiac IKS potassium channel together with its ß-subunit KCNE1. Surprisingly, KCNE1 has been claimed to interact with TMEM16A, and to be required for activation of TMEM16A in mouse RPT. Interaction with KCNE1 was reported to switch TMEM16A from a Ca22+-dependent to a voltage-dependent ion channel. Here we demonstrate that KCNE1 is not expressed in mouse RPT. TMEM16A expressed in RPT is activated by angiotensin II and ATP in a KCNE1-independent manner. Coexpression of KCNE1 does not change TMEM16A to a voltage gated Cl- channel and Ca2+-dependent regulation of TMEM16A is fully maintained in the presence of KCNE1. While overexpressed KCNE1 slightly affects Ca2+-dependent regulation of TMEM16A, the data provide no evidence for KCNE1 being an auxiliary functional subunit for TMEM16A.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Coração , Canal de Potássio KCNQ1/genética , Túbulos Renais Proximais , Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
7.
Pflugers Arch ; 475(2): 167-179, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36205782

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αßγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δßγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Canais Epiteliais de Sódio , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Simulação de Acoplamento Molecular , Cátions/metabolismo
8.
FASEB J ; 36(11): e22534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183361

RESUMO

The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.


Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Prótons , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
9.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686084

RESUMO

The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.


Assuntos
Fibrose Cística , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Anoctaminas , Proteínas de Membrana Transportadoras , Transportadores de Sulfato/genética , Antiporters
10.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762516

RESUMO

Studies in human colonic cell lines and murine intestine suggest the presence of a Ca2+-activated anion channel, presumably TMEM16a. Is there a potential for fluid secretion in patients with severe cystic fibrosis transmembrane conductance regulator (CFTR) mutations by activating this alternative pathway? Two-dimensional nondifferentiated colonoid-myofibroblast cocultures resembling transit amplifying/progenitor (TA/PE) cells, as well as differentiated monolayer (DM) cultures resembling near-surface cells, were established from both healthy controls (HLs) and patients with severe functional defects in the CFTR gene (PwCF). F508del mutant and CFTR knockout (null) mice ileal and colonic mucosa was also studied. HL TA/PE monolayers displayed a robust short-circuit current response (ΔIeq) to UTP (100 µM), forskolin (Fsk, 10 µM) and carbachol (CCH, 100 µM), while ΔIeq was much smaller in differentiated monolayers. The selective TMEM16a inhibitor Ani9 (up to 30 µM) did not alter the response to luminal UTP, significantly decreased Fsk-induced ΔIeq, and significantly increased CCH-induced ΔIeq in HL TA/PE colonoid monolayers. The PwCF TA/PE and the PwCF differentiated monolayers displayed negligible agonist-induced ΔIeq, without a significant effect of Ani9. When TMEM16a was localized in intracellular structures, a staining in the apical membrane was not detected. TMEM16a is highly expressed in human colonoid monolayers resembling transit amplifying cells of the colonic cryptal neck zone, from both HL and PwCF. While it may play a role in modulating agonist-induced CFTR-mediated anion currents, it is not localized in the apical membrane, and it has no function as an apical anion channel in cystic fibrosis (CF) and healthy human colonic epithelium.


Assuntos
Fibrose Cística , Animais , Humanos , Camundongos , Ânions , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Epitélio , Uridina Trifosfato
11.
FASEB J ; 35(10): e21897, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473378

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of bilateral renal cysts which enlarge continuously, leading to compression of adjacent intact nephrons. The growing cysts lead to a progressive decline in renal function. Cyst growth is driven by enhanced cell proliferation and chloride secretion into the cyst lumen. Chloride secretion is believed to occur mainly by the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR), with some contribution by the calcium-activated chloride channel TMEM16A. However, our previous work suggested TMEM16A as a major factor for renal cyst formation. The contribution of CFTR to cyst formation has never been demonstrated in an adult ADPKD mouse model. We used mice with an inducible tubule-specific Pkd1 knockout, which consistently develop polycystic kidneys upon deletion of Pkd1. Cellular properties, ion currents, and cyst development in these mice were compared with that of mice carrying a co-deletion of Pkd1 and Cftr. Knockout of Cftr did not reveal any significant impact on cyst formation in the ADPKD mouse model. Furthermore, knockout of Cftr did not attenuate the largely augmented cell proliferation observed in Pkd1 knockout kidneys. Patch clamp analysis on primary renal epithelial cells lacking expression of Pkd1 indicated an only marginal contribution of CFTR to whole cell Cl- currents, which were clearly dominated by calcium-activated TMEM16A currents. In conclusion, CFTR does not essentially contribute to renal cyst formation in mice caused by deletion of Pkd1. Enhanced cell proliferation and chloride secretion is caused primarily by upregulation of the calcium-activated chloride channel TMEM16A.


Assuntos
Anoctamina-1/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cistos/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Anoctamina-1/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cistos/genética , Cistos/patologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética
12.
J Med Genet ; 58(4): 247-253, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32487539

RESUMO

INTRODUCTION: TMEM16A is a calcium-activated chloride channel expressed in various secretory epithelia. Two siblings presented in early infancy with reduced intestinal peristalsis and recurrent episodes of haemorrhagic diarrhoea. In one of them, the episodes were characterised by hepatic pneumatosis with gas bubbles in the portal vein similar to necrotising enterocolitis of the newborn. METHODS: Exome sequencing identified a homozygous truncating pathogenic variant in ANO1. Expression analysis was performed using reverse transcription PCR, western blot and immunohistochemistry. Electrophysiological and cell biological studies were employed to characterise the effects on ion transport both in patient respiratory epithelial cells and in transfected HEK293 cells. RESULTS: The identified variant led to TMEM16A dysfunction, which resulted in abolished calcium-activated Cl- currents. Secondarily, CFTR function is affected due to the close interplay between both channels without inducing cystic fibrosis (CF). CONCLUSION: TMEM16A deficiency is a potentially fatal disorder caused by abolished calcium-activated Cl- currents in secretory epithelia. Secondary impairment of CFTR function did not cause a CF phenotyp, which may have implications for CF treatment.


Assuntos
Anoctamina-1/genética , Canais de Cloreto/genética , Predisposição Genética para Doença , Doenças do Recém-Nascido/genética , Proteínas de Neoplasias/genética , Anoctamina-1/deficiência , Transporte Biológico/genética , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/patologia , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/epidemiologia , Doenças do Recém-Nascido/patologia , Masculino , Proteínas de Neoplasias/deficiência
13.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328418

RESUMO

SLC26A9 is an epithelial anion transporter with a poorly defined function in airways. It is assumed to contribute to airway chloride secretion and airway surface hydration. However, immunohistochemistry showing precise localization of SLC26A9 in airways is missing. Some studies report localization near tight junctions, which is difficult to reconcile with a chloride secretory function of SLC26A9. We therefore performed immunocytochemistry of SLC26A9 in sections of human and porcine lungs. Obvious apical localization of SLC26A9 was detected in human and porcine superficial airway epithelia, whereas submucosal glands did not express SLC26A9. The anion transporter was located exclusively in ciliated epithelial cells. Highly differentiated BCi-NS1 human airway epithelial cells grown on permeable supports also expressed SLC26A9 in the apical membrane of ciliated epithelial cells. BCi-NS1 cells expressed the major Cl- transporting proteins CFTR, TMEM16A and SLC26A9 in about equal proportions and produced short-circuit currents activated by increases in intracellular cAMP or Ca2+. Both CFTR and SLC26A9 contribute to basal chloride currents in non-stimulated BCi-NS1 airway epithelia, with CFTR being the dominating Cl- conductance. In wtCFTR-expressing CFBE human airway epithelial cells, SLC26A9 was partially located in the plasma membrane, whereas CFBE cells expressing F508del-CFTR showed exclusive cytosolic localization of SLC26A9. Membrane localization of SLC26A9 and basal chloride currents were augmented by interleukin 13 in wild-type CFTR-expressing cells, but not in cells expressing the most common disease-causing mutant F508del-CFTR. The data suggest an upregulation of SLC26A9-dependent chloride secretion in asthma, but not in the presence of F508del-CFTR.


Assuntos
Asma , Regulador de Condutância Transmembrana em Fibrose Cística , Antiporters/metabolismo , Asma/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
14.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163010

RESUMO

Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.


Assuntos
Niclosamida/administração & dosagem , Pneumonia/tratamento farmacológico , Sistema Respiratório/efeitos dos fármacos , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , COVID-19/complicações , Células Cultivadas , Modelos Animais de Doenças , Portadores de Fármacos/química , Composição de Medicamentos , Humanos , Hidrogéis/química , Instilação de Medicamentos , Camundongos , Microesferas , Muco/efeitos dos fármacos , Muco/metabolismo , Nanosferas/administração & dosagem , Nanosferas/química , Niclosamida/química , Niclosamida/farmacocinética , Pneumonia/patologia , Polietilenoglicóis/química , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Traqueia , Tratamento Farmacológico da COVID-19
15.
Am J Respir Cell Mol Biol ; 64(1): 50-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026825

RESUMO

TMEM16A is a Ca2+-activated chloride channel that was shown to enhance production and secretion of mucus in inflamed airways. It is, however, not clear whether TMEM16A directly supports mucus production, or whether mucin and TMEM16A are upregulated independently during inflammatory airway diseases such as asthma and cystic fibrosis (CF). We examined this question using BCi-NS1 cells, a human airway basal cell line that maintains multipotent differentiation capacity, and the two human airway epithelial cell lines, Calu-3 and CFBE. The data demonstrate that exposure of airway epithelial cells to IL-8 and IL-13, two cytokines known to be enhanced in CF and asthma, respectively, leads to an increase in mucus production. Expression of MUC5AC was fully dependent on expression of TMEM16A, as shown by siRNA knockdown of TMEM16A. In addition, different inhibitors of TMEM16A attenuated IL-13-induced mucus production. Interestingly, in CFBE cells expressing F508 delCFTR, IL-13 was unable to upregulate membrane expression of TMEM16A or Ca2+-activated whole cell currents. The regulator of TMEM16A, CLCA1, strongly augmented both Ca2+- and cAMP-activated Cl- currents in cells expressing wtCFTR but failed to augment membrane expression of TMEM16A in F508 delCFTR-expressing CFBE cells. The data confirm the functional relationship between CFTR and TMEM16A and suggest an impaired upregulation of TMEM16A by IL-13 or CLCA1 in cells expressing the most frequent CF-causing mutation F508 delCFTR.


Assuntos
Anoctamina-1/metabolismo , Células Epiteliais/metabolismo , Muco/metabolismo , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/metabolismo , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Canais de Cloreto/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HEK293 , Células HT29 , Humanos , Interleucina-13/metabolismo , RNA Interferente Pequeno/metabolismo , Regulação para Cima/fisiologia
16.
J Physiol ; 599(12): 3003-3011, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33963548

RESUMO

This review summarizes the newly discovered molecular mechanism of secretin-stimulated urine HCO3- excretion and the role of cystic fibrosis transmembrane conductance regulator (CFTR) in renal HCO3- excretion. The secretin receptor is functionally expressed in the basolateral membrane of the HCO3- -secreting ß-intercalated cells of the collecting duct. Here it activates a fast and efficient secretion of HCO3- into the urine serving to normalize metabolic alkalosis. The ability to acutely increase renal base excretion is entirely dependent on functional pendrin (SLC26A4) and CFTR, and both proteins localize to the apical membrane of the ß-intercalated cells. In cystic fibrosis mice and patients, this function is absent or markedly reduced. We discuss that the alkaline tide, namely the transient urine alkalinity after a meal, has now received a clear physiological explanation.


Assuntos
Bicarbonatos , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Camundongos , Secretina , Transportadores de Sulfato
17.
Cell Physiol Biochem ; 55(5): 590-604, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34637202

RESUMO

BACKGROUND/AIMS: Oxidative stress and infections by Pseudomonas aeruginosa (P. aeruginosa) are prominent in lungs of patients suffering from cystic fibrosis (CF). METHODS: The present study examines effects of P. aeruginosa on lipid peroxidation in human and mouse lungs, and cell death induced by P. aeruginosa in human airway epithelial cells. The role of the Ca2+ activated Cl- channel TMEM16A, the phospholipid scramblase TMEM16F, and the CFTR Cl- channel for ferroptotic cell death is examined. RESULTS: Lipid peroxidation was detected in human CF lungs, which correlated with bacterial infection. In vivo inoculation with P. aeruginosa or Staphylococcus aureus (S. aureus) induced lipid peroxidation in lungs of mice lacking expression of CFTR, and in lungs of wild type animals. Incubation of CFBE human airway epithelial cells with P. aeruginosa induced an increase in reactive oxygen species (ROS), causing lipid peroxidation and cell death independent of expression of wt-CFTR or F508del-CFTR. Knockdown of TMEM16A attenuated P. aeruginosa induced cell death. Antioxidants such as coenzyme Q10 and idebenone as well as the inhibitor of ferroptosis, ferrostatin-1, inhibited P. aeruginosa-induced cell death. CFBE cells expressing wtCFTR, but not F508del-CFTR, activated a basal Cl- conductance upon exposure to P. aeruginosa, which was caused by an increase in intracellular basal Ca2+ concentrations and activation of Ca2+-dependent adenylate cyclase. CONCLUSION: The data suggest an intrinsic pro-inflammatory phenotype in CF epithelial cells, while ferroptosis is observed in both non-CF and CF epithelial cells upon infection with P. aeruginosa. CF cells fail to activate fluid secretion in response to infection with P. aeruginosa. The use of antioxidants and inhibitors of ferroptosis is proposed as a treatment of pneumonia caused by infection with P. aeruginosa.


Assuntos
Fibrose Cística/patologia , Ferroptose , Peroxidação de Lipídeos , Pulmão/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/fisiologia , Animais , Linhagem Celular , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/metabolismo
18.
J Am Soc Nephrol ; 31(8): 1711-1727, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32703846

RESUMO

BACKGROUND: Patients with cystic fibrosis (CF) do not respond with increased urinary HCO3- excretion after stimulation with secretin and often present with metabolic alkalosis. METHODS: By combining RT-PCR, immunohistochemistry, isolated tubule perfusion, in vitro cell studies, and in vivo studies in different mouse models, we elucidated the mechanism of secretin-induced urinary HCO3- excretion. For CF patients and CF mice, we developed a HCO3- drinking test to assess the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in urinary HCO3-excretion and applied it in the patients before and after treatment with the novel CFTR modulator drug, lumacaftor-ivacaftor. RESULTS: ß-Intercalated cells express basolateral secretin receptors and apical CFTR and pendrin. In vivo application of secretin induced a marked urinary alkalization, an effect absent in mice lacking pendrin or CFTR. In perfused cortical collecting ducts, secretin stimulated pendrin-dependent Cl-/HCO3- exchange. In collecting ducts in CFTR knockout mice, baseline pendrin activity was significantly lower and not responsive to secretin. Notably, patients with CF (F508del/F508del) and CF mice showed a greatly attenuated or absent urinary HCO3--excreting ability. In patients, treatment with the CFTR modulator drug lumacaftor-ivacaftor increased the renal ability to excrete HCO3-. CONCLUSIONS: These results define the mechanism of secretin-induced urinary HCO3- excretion, explain metabolic alkalosis in patients with CF, and suggest feasibility of an in vivo human CF urine test to validate drug efficacy.


Assuntos
Bicarbonatos/metabolismo , Fibrose Cística/metabolismo , Rim/metabolismo , Animais , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos Endogâmicos F344 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/fisiologia , Secretina/farmacologia
19.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199520

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss of function of PKD1 (polycystin 1) or PKD2 (polycystin 2). The Ca2+-activated Cl- channel TMEM16A has a central role in ADPKD. Expression and function of TMEM16A is upregulated in ADPKD which causes enhanced intracellular Ca2+ signaling, cell proliferation, and ion secretion. We analyzed kidneys from Pkd1 knockout mice and found a more pronounced phenotype in males compared to females, despite similar levels of expression for renal tubular TMEM16A. Cell proliferation, which is known to be enhanced with loss of Pkd1-/-, was larger in male when compared to female Pkd1-/- cells. This was paralleled by higher basal intracellular Ca2+ concentrations in primary renal epithelial cells isolated from Pkd1-/- males. The results suggest enhanced intracellular Ca2+ levels contributing to augmented cell proliferation and cyst development in male kidneys. Enhanced resting Ca2+ also caused larger basal chloride currents in male primary cells, as detected in patch clamp recordings. Incubation of mouse primary cells, mCCDcl1 collecting duct cells or M1 collecting duct cells with dihydrotestosterone (DHT) enhanced basal Ca2+ levels and increased basal and ATP-stimulated TMEM16A chloride currents. Taken together, the more severe cystic phenotype in males is likely to be caused by enhanced cell proliferation, possibly due to enhanced basal and ATP-induced intracellular Ca2+ levels, leading to enhanced TMEM16A currents. Augmented Ca2+ signaling is possibly due to enhanced expression of Ca2+ transporting/regulating proteins.


Assuntos
Anoctamina-1/genética , Doenças Renais Policísticas/genética , Canais de Cátion TRPP/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Proliferação de Células/genética , Cloretos/metabolismo , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Caracteres Sexuais
20.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066250

RESUMO

TMEM16A, a Ca2+-activated chloride channel (CaCC), and its regulator, CLCA1, are associated with inflammatory airway disease and goblet cell metaplasia. CLCA1 is a secreted protein with protease activity that was demonstrated to enhance membrane expression of TMEM16A. Expression of CLCA1 is particularly enhanced in goblet cell metaplasia and is associated with various lung diseases. However, mice lacking expression of CLCA1 showed the same degree of mucous cell metaplasia and airway hyperreactivity as asthmatic wild-type mice. To gain more insight into the role of CLCA1, we applied secreted N-CLCA1, produced in vitro, to mice in vivo using intratracheal instillation. We observed no obvious upregulation of TMEM16A membrane expression by CLCA1 and no differences in ATP-induced short circuit currents (Iscs). However, intraluminal mucus accumulation was observed by treatment with N-CLCA1 that was not seen in control animals. The effects of N-CLCA1 were augmented in ovalbumin-sensitized mice. Mucus production induced by N-CLCA1 in polarized BCi-NS1 human airway epithelial cells was dependent on TMEM16A expression. IL-13 upregulated expression of CLCA1 and enhanced mucus production, however, without enhancing purinergic activation of Isc. In contrast to polarized airway epithelial cells and mouse airways, which express very low levels of TMEM16A, nonpolarized airway cells express large amounts of TMEM16A protein and show strong CaCC. The present data show an only limited contribution of TMEM16A to airway ion secretion but suggest a significant role of both CLCA1 and TMEM16A for airway mucus secretion.


Assuntos
Anoctamina-1/metabolismo , Asma/patologia , Canais de Cloreto/metabolismo , Células Caliciformes/patologia , Metaplasia/patologia , Muco/metabolismo , Mucosa Respiratória/patologia , Animais , Anoctamina-1/genética , Asma/induzido quimicamente , Asma/metabolismo , Canais de Cloreto/genética , Células Caliciformes/metabolismo , Metaplasia/induzido quimicamente , Metaplasia/metabolismo , Camundongos , Ovalbumina/toxicidade , Mucosa Respiratória/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa