Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 178: 108635, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514016

RESUMO

Recent studies have shown that nanoscale particulate matter produced in commercial charbroiling processes represents a serious health hazard and has been linked to various forms of cancer and cardiopulmonary disease. In this study, we propose a highly effective method for treating restaurant smoke emissions using a transient pulsed plasma reactor produced by nanosecond high voltage pulses. We measure the size and relative mass distributions of particulate matter (PM) produced in commercial charbroiling processes (e.g., cooking of hamburger meat) both with and without the plasma treatment. Here, the plasma discharge is produced in a 3" diameter cylindrical reactor with a 5-10 ns high voltage (17 kV) pulse generator. The distribution of untreated nanoparticle sizes is peaked around 125-150 nm in diameter, as measured using a scanning mobility particle sizer (SMPS) spectrometer. With plasma treatment, we observe up to a 55-fold reduction in relative particle mass and a significant reduction in the nanoparticle size distribution using this method. The effectiveness of the nanoscale PM remediation increases with both the pulse repetition rate and pulse voltage, demonstrating the scalability of this approach for treating particulate matter at higher flow rates and larger diameter reactors.


Assuntos
Poluentes Atmosféricos , Culinária , Recuperação e Remediação Ambiental/métodos , Material Particulado , Restaurantes/estatística & dados numéricos , Monitoramento Ambiental , Tamanho da Partícula , Fumaça
2.
J Am Chem Soc ; 137(1): 201-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25551179

RESUMO

Oxidative damage to DNA and hole transport between nucleobases in oxidized DNA are important processes in lesion formation for which surprisingly poor thermodynamic data exist, the relative ease of oxidizing the four nucleobases being one such example. Theoretical simulations of radiation damage and charge transport in DNA depend on accurate values for vertical ionization energies (VIEs), reorganization energies, and standard reduction potentials. Liquid-jet photoelectron spectroscopy can be used to directly study the oxidation half-reaction. The VIEs of nucleic acid building blocks are measured in their native buffered aqueous environment. The experimental investigation of purine and pyrimidine nucleotides, nucleosides, pentose sugars, and inorganic phosphate demonstrates that photoelectron spectra of nucleotides arise as a spectral sum over their individual chemical components; that is, the electronic interactions between each component are effectively screened from one another by water. Electronic structure theory affords the assignment of the lowest energy photoelectron band in all investigated nucleosides and nucleotides to a single ionizing transition centered solely on the nucleobase. Thus, combining the measured VIEs with theoretically determined reorganization energies allows for the spectroscopic determination of the one-electron redox potentials that have been difficult to establish via electrochemistry.


Assuntos
DNA/química , Nucleotídeos/química , Purinas/química , Pirimidinas/química , Teoria Quântica , Oxirredução , Espectroscopia Fotoeletrônica , Água/química
3.
FASEB J ; 25(9): 3079-91, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21613571

RESUMO

To elucidate the involvement of specific ultraviolet (UV) wavelengths in solar mutagenesis, we used a laser system to investigate the induction of DNA damage, both in the overall genome and at the nucleotide resolution level, in the genomic DNA of transgenic Big Blue mouse fibroblasts irradiated with a series of UV wavelengths, inclusive of UVC (λ<280 nm), UVB (λ=280-320 nm), and UVA (λ>320 nm). Subsequently, we sought correlation between the locations of UV-induced DNA lesions in the cII transgene of irradiated DNA samples and the frequency distribution and codon position of the induced cII mutations in counterpart mouse cells irradiated with simulated sunlight. Using a combination of enzymatic digestion assays coupled with gel electrophoresis, immunodot blot assays, and DNA footprinting assays, we demonstrated a unique wavelength-dependent formation of photodimeric lesions, i.e., cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts [(6-4)PPs], based on direct UV absorption of DNA, in irradiated mouse genomic DNA, which could partially explain the induction of mutations in mouse cells irradiated with simulated sunlight. Most notably, there was a divergence of CPD and (6-4)PP formation at an irradiation wavelength of 296 nm in mouse genomic DNA. Whereas substantial formation of (6-4)PPs was detectable in samples irradiated at this wavelength, which intensified as the irradiation wavelength decreased, only small quantities of these lesions were found in samples irradiated at wavelengths of 300-305 nm, with no detectable level of (6-4)PPs in samples irradiated with longer wavelengths. Although CPD formation followed the same pattern of increase with decreasing wavelengths of irradiation, there were substantial levels of CPDs in samples irradiated with UVB wavelengths borderlined with UVA, and small but detectable levels of these lesions in samples irradiated with longer wavelengths. Because the terrestrial sunlight spectrum rolls off sharply at wavelengths ~300 nm, our findings suggest that CPDs are the principal lesion responsible for most DNA damage-dependent biological effects of sunlight.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/genética , Dímeros de Pirimidina/química , Animais , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Genoma/efeitos da radiação , Lasers , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Mutação , Espectroscopia Fotoeletrônica , Dímeros de Pirimidina/efeitos da radiação , Luz Solar , Raios Ultravioleta
4.
Sci Total Environ ; 851(Pt 1): 158181, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988598

RESUMO

This study reports enhancement in the electrostatic precipitation (ESP) of diesel engine exhaust particulates using high voltage nanosecond pulse discharge in conjunction with a negative direct current (DC) bias voltage. The high voltage (20 kV) nanosecond pulses produce ion densities that are several orders of magnitude higher than those in the corona produced by a standard DC-only ESP. This plasma-enhanced electrostatic precipitator (PE-ESP) demonstrated 95 % remediation of PM and consumes less than 1 % of the engine power (i.e., 37 kW diesel engine at 75 % load). While the DC-only ESP remediation increases linearly with applied voltage, the plasma-enhanced ESP remains approximately constant over the applied range of negative DC biases. Numerical simulations of the PE-ESP process agree with the DC-only experimental results and enable us to verify the charge-based mechanism of enhancement provided by the nanosecond high voltage pulse plasma. Two different reactor configurations with different flow rates yielded the same remediation values despite one having half the flow rate of the other. This indicates that the reactor can be made even smaller without sacrificing performance. Here, this study finds that the plasma enhancement enables high remediation values at low DC voltages and smaller ESP reactors to be made with high remediation.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Material Particulado/análise , Eletricidade Estática , Emissões de Veículos/análise
5.
J Phys Chem B ; 116(44): 13254-64, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22970895

RESUMO

We use photoelectron emission spectroscopy with vacuum microjet technique and quantum chemistry calculations to investigate electronic structure and stability of aqueous phosphate anions. On the basis of the measured photoelectron spectra of sodium phosphates at different pH, we report the lowest vertical ionization energies of monobasic (9.5 eV), dibasic (8.9 eV), and tribasic (8.4 eV) anions. Electron binding energies were in tandem modeled with ab initio methods, using a mixed dielectric solvation model together with up to 64 explicitly solvating water molecules. We demonstrate that two solvation layers of explicit water molecules are needed to obtain converged values of vertical ionization energies (VIEs) within this mixed solvation model, leading to very good agreement with experiment. We also show that the highly charged PO(4)(3-) anion, which is electronically unstable in the gas phase, gains the electronic stability with about 16 water molecules, while only 2-3 water molecules are sufficient to stabilize the doubly charged phosphate anion. We also investigate the effect of ion pairing on the vertical ionization energy. In contrast to protonation (leading to a formation of covalent O-H bond), sodiation (leading to an anion···Na(+) ion pair) has only a weak effect on the electron binding energy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa