Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 83(11): 1856-1871.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267906

RESUMO

The pentameric FERRY Rab5 effector complex is a molecular link between mRNA and early endosomes in mRNA intracellular distribution. Here, we determine the cryo-EM structure of human FERRY. It reveals a unique clamp-like architecture that bears no resemblance to any known structure of Rab effectors. A combination of functional and mutational studies reveals that while the Fy-2 C-terminal coiled-coil acts as binding region for Fy-1/3 and Rab5, both coiled-coils and Fy-5 concur to bind mRNA. Mutations causing truncations of Fy-2 in patients with neurological disorders impair Rab5 binding or FERRY complex assembly. Thus, Fy-2 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via Rab5. Our study provides mechanistic insights into long-distance mRNA transport and demonstrates that the particular architecture of FERRY is closely linked to a previously undescribed mode of RNA binding, involving coiled-coil domains.


Assuntos
Proteínas de Transporte Vesicular , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/análise , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/genética , Endossomos/metabolismo
2.
Mol Cell ; 83(11): 1839-1855.e13, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267905

RESUMO

Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.


Assuntos
Endossomos , Proteínas rab5 de Ligação ao GTP , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endossomos/metabolismo , Transporte Biológico , Endocitose/fisiologia
3.
Proc Natl Acad Sci U S A ; 117(14): 7729-7738, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213584

RESUMO

Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol-protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.


Assuntos
Diglicerídeos/química , Lipídeos/química , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Sobrevivência Celular , Isoenzimas/metabolismo , Cinética , Luz , Modelos Biológicos , Proteína Quinase C/metabolismo , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 112(43): 13348-53, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460002

RESUMO

Nucleotide-based second messengers serve in the response of living organisms to environmental changes. In bacteria and plant chloroplasts, guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) [collectively named "(p)ppGpp"] act as alarmones that globally reprogram cellular physiology during various stress conditions. Enzymes of the RelA/SpoT homology (RSH) family synthesize (p)ppGpp by transferring pyrophosphate from ATP to GDP or GTP. Little is known about the catalytic mechanism and regulation of alarmone synthesis. It also is unclear whether ppGpp and pppGpp execute different functions. Here, we unravel the mechanism and allosteric regulation of the highly cooperative alarmone synthetase small alarmone synthetase 1 (SAS1) from Bacillus subtilis. We determine that the catalytic pathway of (p)ppGpp synthesis involves a sequentially ordered substrate binding, activation of ATP in a strained conformation, and transfer of pyrophosphate through a nucleophilic substitution (SN2) reaction. We show that pppGpp-but not ppGpp-positively regulates SAS1 at an allosteric site. Although the physiological significance remains to be elucidated, we establish the structural and mechanistic basis for a biological activity in which ppGpp and pppGpp execute different functional roles.


Assuntos
Regulação Alostérica/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/biossíntese , Guanosina Tetrafosfato/biossíntese , Ligases/fisiologia , Proteínas de Bactérias/química , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Clonagem Molecular , Cristalização , Escherichia coli , Ligases/metabolismo , Espectrometria de Massas , Mutagênese
5.
Proc Natl Acad Sci U S A ; 112(10): 3092-7, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25733861

RESUMO

The number and location of flagella, bacterial organelles of locomotion, are species specific and appear in regular patterns that represent one of the earliest taxonomic criteria in microbiology. However, the mechanisms that reproducibly establish these patterns during each round of cell division are poorly understood. FlhG (previously YlxH) is a major determinant for a variety of flagellation patterns. Here, we show that FlhG is a structural homolog of the ATPase MinD, which serves in cell-division site determination. Like MinD, FlhG forms homodimers that are dependent on ATP and lipids. It interacts with a complex of the flagellar C-ring proteins FliM and FliY (also FliN) in the Gram-positive, peritrichous-flagellated Bacillus subtilis and the Gram-negative, polar-flagellated Shewanella putrefaciens. FlhG interacts with FliM/FliY in a nucleotide-independent manner and activates FliM/FliY to assemble with the C-ring protein FliG in vitro. FlhG-driven assembly of the FliM/FliY/FliG complex is strongly enhanced by ATP and lipids. The protein shows a highly dynamic subcellular distribution between cytoplasm and flagellar basal bodies, suggesting that FlhG effects flagellar location and number during assembly of the C-ring. We describe the molecular evolution of a MinD-like ATPase into a flagellation pattern effector and suggest that the underappreciated structural diversity of the C-ring proteins might contribute to the formation of different flagellation patterns.


Assuntos
Proteínas de Bactérias/fisiologia , Flagelos/fisiologia , Proteínas de Bactérias/metabolismo , Dimerização , Flagelos/enzimologia
6.
FEMS Microbiol Rev ; 39(6): 812-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26195616

RESUMO

Bacteria differ in number and location of their flagella that appear in regular patterns at the cell surface (flagellation pattern). Despite the plethora of bacterial species, only a handful of these patterns exist. The correct flagellation pattern is a prerequisite for motility, but also relates to biofilm formation and the pathogenicity of disease-causing flagellated bacteria. However, the mechanisms that maintain location and number of flagella are far from being understood. Here, we review our knowledge on mechanisms that enable bacteria to maintain their appropriate flagellation pattern. While some peritrichous flagellation patterns might occur by rather simple stochastic processes, other bacterial species appear to rely on landmark systems to define the designated flagellar position. Such landmarks are the Tip system of Caulobacter crescentus or the signal recognition particle (SRP)-GTPase FlhF and the MinD/ParA-type ATPase FlhG (synonyms: FleN, YlxH and MinD2). The latter two proteins constitute a regulatory circuit essential for diverse flagellation patterns in many Gram-positive and negative species. The interactome of FlhF/G (e.g. C-ring proteins FliM, FliN, FliY or the transcriptional regulator FleQ/FlrA) seems evolutionary adapted to meet the specific needs for a respective pattern. This variability highlights the importance of the correct flagellation pattern for motile species.


Assuntos
Fenômenos Fisiológicos Bacterianos , Flagelos/fisiologia , Bactérias/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa