Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(37): 17022-17032, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084022

RESUMO

NAD+-reducing [NiFe] hydrogenases are valuable biocatalysts for H2-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O2 and elevated temperatures, the soluble NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus (HtSH) is O2-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native HtSH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized HtSH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O2 levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O2 that could protect the enzyme from oxidative damage.


Assuntos
Hidrogenase , Alanina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hidrogenase/química , Hydrogenophilaceae , Ferro/química , Ligantes , NAD/metabolismo , Níquel/química , Oxirredução , Oxigênio/química
2.
J Am Chem Soc ; 142(3): 1457-1464, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31830412

RESUMO

[NiFe] hydrogenases catalyze the reversible oxidation of molecular hydrogen into two protons and two electrons. A key organometallic chemistry feature of the NiFe active site is that the iron atom is co-coordinated by two cyanides (CN-) and one carbon monoxide (CO) ligand. Biosynthesis of the NiFe(CN)2(CO) cofactor requires the activity of at least six maturation proteins, designated HypA-F. An additional maturase, HypX, is required for CO ligand synthesis under aerobic conditions, and preliminary in vivo data indicated that HypX releases CO using N10-formyltetrahydrofolate (N10-formyl-THF) as the substrate. HypX has a bipartite structure composed of an N-terminal module similar to N10-formyl-THF transferases and a C-terminal module homologous to enoyl-CoA hydratases/isomerases. This composition suggested that CO production takes place in two consecutive reactions. Here, we present in vitro evidence that purified HypX first transfers the formyl group of N10-formyl-THF to produce formyl-coenzyme A (formyl-CoA) as a central reaction intermediate. In a second step, formyl-CoA is decarbonylated, resulting in free CoA and carbon monoxide. Purified HypX proved to be metal-free, which makes it a unique catalyst among the group of CO-releasing enzymes.


Assuntos
Monóxido de Carbono/química , Enzimas/química , Formiltetra-Hidrofolatos/química , Hidrogenase/química , Oxigênio/química , Ligantes
3.
Environ Microbiol ; 17(5): 1663-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25141768

RESUMO

The haloarchaeon Haloferax volcanii degrades D-xylose and L-arabinose via oxidative pathways to α-ketoglutarate. The genes involved in these pathways are clustered and were transcriptionally upregulated by both D-xylose and L-arabinose suggesting a common regulator. Adjacent to the gene cluster, a putative IclR-like transcriptional regulator, HVO_B0040, was identified. It is shown that HVO_B0040, designated xacR, encodes an activator of both D-xylose and L-arabinose catabolism: in ΔxacR cells, transcripts of genes involved in pentose catabolism could not be detected; transcript formation could be recovered by complementation, indicating XacR dependent transcriptional activation. Upstream activation promoter regions and nucleotide sequences that were essential for XacR-mediated activation of pentose-specific genes were identified by in vivo deletion and scanning mutagenesis. Besides its activator function XacR acted as repressor of its own synthesis: xacR deletion resulted in an increase of xacR promoter activity. A palindromic sequence was identified at the operator site of xacR promoter, and mutation of this sequence also resulted in an increase and thus derepression of xacR promoter activity. It is concluded that the palindromic sequence represents the binding site of XacR as repressor. This is the first report of a transcriptional regulator of pentose catabolism in the domain of archaea.


Assuntos
Arabinose/metabolismo , Metabolismo dos Carboidratos/genética , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Xilose/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , DNA Arqueal/análise , DNA Arqueal/genética , Regulação da Expressão Gênica em Archaea , Sequências Repetidas Invertidas/genética , Ácidos Cetoglutáricos/metabolismo , Dados de Sequência Molecular , Oxirredução , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência/genética , Transcrição Gênica/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa