Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 205(3): 1128-1141, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417785

RESUMO

Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel 'attack box' method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance by I. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials.


Assuntos
Besouros/fisiologia , Picea/parasitologia , Casca de Planta/parasitologia , Doenças das Plantas/parasitologia , Água/metabolismo , Animais , Áustria , Clima , Suscetibilidade a Doenças , Secas , Modelos Lineares , Solo , Estresse Fisiológico , Árvores/parasitologia , Água/análise , Tempo (Meteorologia)
2.
Sci Total Environ ; 830: 154662, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35318060

RESUMO

The measures taken to contain the spread of COVID-19 in 2020 included restrictions of people's mobility and reductions in economic activities. These drastic changes in daily life, enforced through national lockdowns, led to abrupt reductions of anthropogenic CO2 emissions in urbanized areas all over the world. To examine the effect of social restrictions on local emissions of CO2, we analysed district level CO2 fluxes measured by the eddy-covariance technique from 13 stations in 11 European cities. The data span several years before the pandemic until October 2020 (six months after the pandemic began in Europe). All sites showed a reduction in CO2 emissions during the national lockdowns. The magnitude of these reductions varies in time and space, from city to city as well as between different areas of the same city. We found that, during the first lockdowns, urban CO2 emissions were cut with respect to the same period in previous years by 5% to 87% across the analysed districts, mainly as a result of limitations on mobility. However, as the restrictions were lifted in the following months, emissions quickly rebounded to their pre-COVID levels in the majority of sites.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/epidemiologia , Dióxido de Carbono/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa