Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309273

RESUMO

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores ErbB/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Linfócitos T Reguladores/metabolismo
2.
Cell ; 160(1-2): 269-84, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594183

RESUMO

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Assuntos
Osso e Ossos/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Intestino Delgado/citologia , Células-Tronco Mesenquimais/citologia , Animais , Cartilagem/metabolismo , Intestino Delgado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
Nature ; 610(7931): 366-372, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198801

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver1. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support2,3 or restrain the progression of PDAC and may impede blood supply and nutrient availability4. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood. Here we show that matrix-metalloprotease-cleaved Col I (cCol I) and intact Col I (iCol I) exert opposing effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis. Whereas cCol I activates discoidin domain receptor 1 (DDR1)-NF-κB-p62-NRF2 signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1 and restrains the growth of PDAC. Patients whose tumours are enriched for iCol I and express low levels of DDR1 and NRF2 have improved median survival compared to those whose tumours have high levels of cCol I, DDR1 and NRF2. Inhibition of the DDR1-stimulated expression of NF-κB or mitochondrial biogenesis blocks tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I. The diverse effects of the tumour stroma on the growth and metastasis of PDAC and on the survival of patients are mediated through the Col I-DDR1-NF-κB-NRF2 mitochondrial biogenesis pathway, and targeting components of this pathway could provide therapeutic opportunities.


Assuntos
Carcinoma Ductal Pancreático , Colágeno Tipo I , Receptor com Domínio Discoidina 1 , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Taxa de Sobrevida
4.
Nature ; 610(7931): 356-365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198802

RESUMO

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células Estreladas do Fígado , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/patologia
5.
Nature ; 595(7865): 114-119, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915568

RESUMO

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Assuntos
COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , SARS-CoV-2/patogenicidade , Análise de Célula Única , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Atlas como Assunto , Autopsia , COVID-19/imunologia , Estudos de Casos e Controles , Feminino , Fibroblastos/patologia , Fibrose/patologia , Fibrose/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Macrófagos/virologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Linfócitos T/imunologia
6.
Hepatology ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563629

RESUMO

BACKGROUND AND AIMS: Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS: We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-ß2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS: TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.

7.
Gastroenterology ; 164(7): 1279-1292, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894036

RESUMO

BACKGROUND & AIMS: Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS: HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS: YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS: Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Proteínas de Sinalização YAP/metabolismo
9.
Gut ; 72(4): 736-748, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35584893

RESUMO

OBJECTIVE: The diversity of the tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) has not been comprehensively assessed. We aimed to generate a novel molecular iCCA classifier that incorporates elements of the stroma, tumour and immune microenvironment ('STIM' classification). DESIGN: We applied virtual deconvolution to transcriptomic data from ~900 iCCAs, enabling us to devise a novel classification by selecting for the most relevant TME components. Murine models were generated through hydrodynamic tail vein injection and compared with the human disease. RESULTS: iCCA is composed of five robust STIM classes encompassing both inflamed (35%) and non-inflamed profiles (65%). The inflamed classes, named immune classical (~10%) and inflammatory stroma (~25%), differ in oncogenic pathways and extent of desmoplasia, with the inflammatory stroma showing T cell exhaustion, abundant stroma and KRAS mutations (p<0.001). Analysis of cell-cell interactions highlights cancer-associated fibroblast subtypes as potential mediators of immune evasion. Among the non-inflamed classes, the desert-like class (~20%) harbours the lowest immune infiltration with abundant regulatory T cells (p<0.001), whereas the hepatic stem-like class (~35%) is enriched in 'M2-like' macrophages, mutations in IDH1/2 and BAP1, and FGFR2 fusions. The remaining class (tumour classical: ~10%) is defined by cell cycle pathways and poor prognosis. Comparative analysis unveils high similarity between a KRAS/p19 murine model and the inflammatory stroma class (p=0.02). The KRAS-SOS inhibitor, BI3406, sensitises a KRAS-mutant iCCA murine model to anti-PD1 therapy. CONCLUSIONS: We describe a comprehensive TME-based stratification of iCCA. Cross-species analysis establishes murine models that align closely to human iCCA for the preclinical testing of combination strategies.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Microambiente Tumoral
10.
J Hepatol ; 79(5): 1214-1225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37348791

RESUMO

BACKGROUND & AIMS: Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS: The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-ß. Moreover, cell contraction of HSCs in the context of TGF-ß activation was tested in a GARP-dependent fashion. RESULTS: Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-ß and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS: GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-ß. Considering that systemic blockade of TGF-ß has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-ß activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS: Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.

11.
Gastroenterology ; 163(2): 481-494, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35489428

RESUMO

BACKGROUND & AIMS: YES-associated protein (YAP) aberrant activation is implicated in intrahepatic cholangiocarcinoma (iCCA). Transcriptional enhanced associate domain (TEAD)-mediated transcriptional regulation is the primary signaling event downstream of YAP. The role of Wnt/ß-Catenin signaling in cholangiocarcinogenesis remains undetermined. Here, we investigated the possible molecular interplay between YAP and ß-Catenin cascades in iCCA. METHODS: Activated AKT (Myr-Akt) was coexpressed with YAP (YapS127A) or Tead2VP16 via hydrodynamic tail vein injection into mouse livers. Tumor growth was monitored, and liver tissues were collected and analyzed using histopathologic and molecular analysis. YAP, ß-Catenin, and TEAD interaction in iCCAs was investigated through coimmunoprecipitation. Conditional Ctnnb1 knockout mice were used to determine ß-Catenin function in murine iCCA models. RNA sequencing was performed to analyze the genes regulated by YAP and/or ß-Catenin. Immunostaining of total and nonphosphorylated/activated ß-Catenin staining was performed in mouse and human iCCAs. RESULTS: We discovered that TEAD factors are required for YAP-dependent iCCA development. However, transcriptional activation of TEADs did not fully recapitulate YAP's activities in promoting cholangiocarcinogenesis. Notably, ß-Catenin physically interacted with YAP in human and mouse iCCA. Ctnnb1 ablation strongly suppressed human iCCA cell growth and Yap-dependent cholangiocarcinogenesis. Furthermore, RNA-sequencing analysis revealed that YAP/ transcriptional coactivator with PDZ-binding motif (TAZ) regulate a set of genes significantly overlapping with those controlled by ß-Catenin. Importantly, activated/nonphosphorylated ß-Catenin was detected in more than 80% of human iCCAs. CONCLUSION: YAP induces cholangiocarcinogenesis via TEAD-dependent transcriptional activation and interaction with ß-Catenin. ß-Catenin binds to YAP in iCCA and is required for YAP full transcriptional activity, revealing the functional crosstalk between YAP and ß-Catenin pathways in cholangiocarcinogenesis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas de Sinalização YAP , beta Catenina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Carcinogênese , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
12.
Gastroenterology ; 163(6): 1658-1671.e16, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988658

RESUMO

BACKGROUND & AIMS: Pathogenesis of hepatocellular carcinoma (HCC), which kills millions annually, is poorly understood. Identification of risk factors and modifiable determinants and mechanistic understanding of how they impact HCC are urgently needed. METHODS: We sought early prognostic indicators of HCC in C57BL/6 mice, which we found were prone to developing this disease when fed a fermentable fiber-enriched diet. Such markers were used to phenotype and interrogate stages of HCC development. Their human relevance was tested using serum collected prospectively from an HCC/case-control cohort. RESULTS: HCC proneness in mice was dictated by the presence of congenitally present portosystemic shunt (PSS), which resulted in markedly elevated serum bile acids (BAs). Approximately 10% of mice from various sources exhibited PSS/cholemia, but lacked an overt phenotype when fed standard chow. However, PSS/cholemic mice fed compositionally defined diets, developed BA- and cyclooxygenase-dependent liver injury, which was exacerbated and uniformly progressed to HCC when diets were enriched with the fermentable fiber inulin. Such progression to cholestatic HCC associated with exacerbated cholemia and an immunosuppressive milieu, both of which were required in that HCC was prevented by impeding BA biosynthesis or neutralizing interleukin-10 or programmed death protein 1. Analysis of human sera revealed that elevated BA was associated with future development of HCC. CONCLUSIONS: PSS is relatively common in C57BL/6 mice and causes silent cholemia, which predisposes to liver injury and HCC, particularly when fed a fermentable fiber-enriched diet. Incidence of silent PSS/cholemia in humans awaits investigation. Regardless, measuring serum BA may aid HCC risk assessment, potentially alerting select individuals to consider dietary or BA interventions.


Assuntos
Carcinoma Hepatocelular , Doenças do Sistema Digestório , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Neoplasias Hepáticas/etiologia , Carcinoma Hepatocelular/etiologia , Camundongos Endogâmicos C57BL , Próteses e Implantes , Fibras na Dieta
13.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902241

RESUMO

Non-alcoholic fatty liver disease (NAFLD) can progress to non-alcoholic steatohepatitis (NASH), characterized by inflammation and fibrosis. Fibrosis is mediated by hepatic stellate cells (HSC) and their differentiation into activated myofibroblasts; the latter process is also promoted by inflammation. Here we studied the role of the pro-inflammatory adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) in HSCs in NASH. VCAM-1 expression was upregulated in the liver upon NASH induction, and VCAM-1 was found to be present on activated HSCs. We therefore utilized HSC-specific VCAM-1-deficient and appropriate control mice to explore the role of VCAM-1 on HSCs in NASH. However, HSC-specific VCAM-1-deficient mice, as compared to control mice, did not show a difference with regards to steatosis, inflammation and fibrosis in two different models of NASH. Hence, VCAM-1 on HSCs is dispensable for NASH development and progression in mice.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Molécula 1 de Adesão de Célula Vascular , Animais , Camundongos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Inflamação/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Modelos Animais de Doenças
14.
J Hepatol ; 77(4): 1136-1160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750137

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/patologia , Comunicação Celular , Fibrose , Humanos , Inflamação/patologia , Lipídeos , Fígado/patologia , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , RNA , Receptores Citoplasmáticos e Nucleares
15.
J Hepatol ; 76(4): 910-920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34902531

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a leading cause of hepatocellular carcinoma (HCC), but mechanisms linking NASH to eventual tumor formation remain poorly understood. Herein, we investigate the role of TAZ/WWTR1, which is induced in hepatocytes in NASH, in the progression of NASH to HCC. METHODS: The roles of hepatocyte TAZ and its downstream targets were investigated in diet-induced and genetic models of NASH-HCC using gene-targeting, adeno-associated virus 8 (AAV8)-H1-mediated gene silencing, or AAV8-TBG-mediated gene expression. The biochemical signature of the newly elucidated pathway was probed in liver specimens from humans with NASH-HCC. RESULTS: When hepatocyte-TAZ was silenced in mice with pre-tumor NASH using AAV8-H1-shTaz (short-hairpin Taz), subsequent HCC tumor development was suppressed. In this setting, the tumor-suppressing effect of shTaz was not dependent of TAZ silencing in the tumors themselves and could be dissociated from the NASH-suppressing effects of shTaz. The mechanism linking pre-tumor hepatocyte-TAZ to eventual tumor formation involved TAZ-mediated induction of the NOX2-encoding gene Cybb, which led to NADPH-mediated oxidative DNA damage. As evidence, DNA damage and tumor formation could be suppressed by treatment of pre-tumor NASH mice with AAV8-H1-shCybb; AAV8-TBG-OGG1, encoding the oxidative DNA-repair enzyme 8-oxoguanine glycosylase; or AAV8-TBG-NHEJ1, encoding the dsDNA repair enzyme non-homologous end-joining factor 1. In surrounding non-tumor tissue from human NASH-HCC livers, there were strong correlations between TAZ, NOX2, and oxidative DNA damage. CONCLUSIONS: TAZ in pre-tumor NASH-hepatocytes, via induction of Cybb and NOX2-mediated DNA damage, contributes to subsequent HCC tumor development. These findings illustrate how NASH provides a unique window into the early molecular events that can lead to tumor formation and suggest that NASH therapies targeting TAZ might also prevent NASH-HCC. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is emerging as the leading cause of a type of liver cancer called hepatocellular carcinoma (HCC), but molecular events in pre-tumor NASH hepatocytes leading to HCC remain largely unknown. Our study shows that a protein called TAZ in pre-tumor NASH-hepatocytes promotes damage to the DNA of hepatocytes and thereby contributes to eventual HCC. This study reveals a very early event in HCC that is induced in pre-tumor NASH, and the findings suggest that NASH therapies targeting TAZ might also prevent NASH-HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Neoplasias Hepáticas , NADPH Oxidase 2 , Hepatopatia Gordurosa não Alcoólica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
16.
J Hepatol ; 76(4): 850-861, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34958836

RESUMO

BACKGROUND & AIMS: Owing to the lack of genetic animal models that adequately recreate key clinical characteristics of cirrhosis, the molecular pathogenesis of cirrhosis has been poorly characterized, and treatments remain limited. Hence, we aimed to better elucidate the pathological mechanisms of cirrhosis using a novel murine model. METHODS: We report on the first murine genetic model mimicking human cirrhosis induced by hepatocyte-specific elimination of microspherule protein 1 (MCRS1), a member of non-specific lethal (NSL) and INO80 chromatin-modifier complexes. Using this genetic tool with other mouse models, cell culture and human samples, combined with quantitative proteomics, single nuclei/cell RNA sequencing and chromatin immunoprecipitation assays, we investigated mechanisms of cirrhosis. RESULTS: MCRS1 loss in mouse hepatocytes modulates the expression of bile acid (BA) transporters - with a pronounced downregulation of Na+-taurocholate cotransporting polypeptide (NTCP) - concentrating BAs in sinusoids and thereby activating hepatic stellate cells (HSCs) via the farnesoid X receptor (FXR), which is predominantly expressed in human and mouse HSCs. Consistently, re-expression of NTCP in mice reduces cirrhosis, and genetic ablation of FXR in HSCs suppresses fibrotic marks in mice and in vitro cell culture. Mechanistically, deletion of a putative SANT domain from MCRS1 evicts histone deacetylase 1 from its histone H3 anchoring sites, increasing histone acetylation of BA transporter genes, modulating their expression and perturbing BA flow. Accordingly, human cirrhosis displays decreased nuclear MCRS1 and NTCP expression. CONCLUSIONS: Our data reveal a previously unrecognized function of MCRS1 as a critical histone acetylation regulator, maintaining gene expression and liver homeostasis. MCRS1 loss induces acetylation of BA transporter genes, perturbation of BA flow, and consequently, FXR activation in HSCs. This axis represents a central and universal signaling event in cirrhosis, which has significant implications for cirrhosis treatment. LAY SUMMARY: By genetic ablation of MCRS1 in mouse hepatocytes, we generate the first genetic mouse model of cirrhosis that recapitulates human features. Herein, we demonstrate that the activation of the bile acid/FXR axis in liver fibroblasts is key in cirrhosis development.


Assuntos
Histonas , Proteínas de Ligação a RNA , Receptores Citoplasmáticos e Nucleares , Acetilação , Animais , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte , Histonas/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Glicoproteínas de Membrana , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
17.
J Hepatol ; 77(1): 15-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167910

RESUMO

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Assuntos
Carnitina O-Palmitoiltransferase , Células Estreladas do Fígado , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Colina , Ácidos Graxos/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Camundongos
18.
Liver Int ; 42(5): 1109-1120, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220659

RESUMO

BACKGROUND & AIMS: Alcoholic hepatitis (AH) is associated with a high incidence of infection and mortality. Rifaximin reduces bacterial overgrowth and translocation. We aimed to study whether the administration of rifaximin as an adjuvant treatment to corticosteroids decreases the number of bacterial infections at 90 days in patients with severe AH compared to a control cohort. METHODS: This was a multicentre, open, comparative pilot study of the addition of rifaximin (1200 mg/day/90 days) to the standard treatment for severe AH. The results were compared with a carefully matched historical cohort of patients treated with standard therapy and matching by age and model of end-stage liver disease (MELD). We evaluated bacterial infections, liver-related complications, mortality and liver function tests after 90 days. RESULTS: Twenty-one and 42 patients were included in the rifaximin and control groups respectively. No significant baseline differences were found between groups. The mean number of infections per patient was 0.29 and 0.62 in the rifaximin and control groups, respectively (p = .049), with a lower incidence of acute-on-chronic liver failure (ACLF) linked to infections within the treatment group. Liver-related complications were lower within the rifaximin group (0.43 vs. 1.26 complications/patient respectively) (p = .01). Mortality was lower in the treated versus the control groups (14.2% vs. 30.9, p = .15) without significant differences. No serious adverse events were associated with rifaximin treatment. CONCLUSIONS: Rifaximin is safe in severe AH with a significant reduction in clinical complications. A lower number of infections and a trend towards a lower ACLF and mortality favours its use in these patients.


Assuntos
Insuficiência Hepática Crônica Agudizada , Infecções Bacterianas , Hepatite Alcoólica , Insuficiência Hepática Crônica Agudizada/complicações , Infecções Bacterianas/complicações , Infecções Bacterianas/tratamento farmacológico , Hepatite Alcoólica/complicações , Hepatite Alcoólica/tratamento farmacológico , Humanos , Projetos Piloto , Rifaximina/uso terapêutico
20.
Z Gastroenterol ; 60(1): 36-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35042252

RESUMO

Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.


Assuntos
Hepatopatias Alcoólicas , Neoplasias Hepáticas , Progressão da Doença , Detecção Precoce de Câncer , Humanos , Fígado , Hepatopatias Alcoólicas/diagnóstico , Hepatopatias Alcoólicas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa