Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Neurol ; 90(5): 725-737, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562035

RESUMO

OBJECTIVE: To describe the neuropathological features of N-methyl-D-aspartate receptor (NMDAR)-encephalitis in an archival autopsy cohort. METHODS: We examined four autopsies from patients with NMDAR-encephalitis; two patients were untreated, three had comorbidities: small cell lung cancer, brain post-transplant lymphoproliferative disease (PTLD), and overlapping demyelination. RESULTS: The two untreated patients had inflammatory infiltrates predominantly composed of perivascular and parenchymal CD3+ /CD8- T cells and CD79a+ B cells/plasma cells in basal ganglia, amygdala, and hippocampus with surrounding white matter. The hippocampi showed a significant decrease of NMDAR-immunoreactivity that correlated with disease severity. The patient with NMDAR-encephalitis and immunosuppression for kidney transplantation developed a brain monomorphic PTLD. Inflammatory changes were compatible with NMDAR-encephalitis. Additionally, plasma cells accumulated in the vicinity of the necrotic tumor along with macrophages and activated microglia that strongly expressed pro-inflammatory activation markers HLA-DR, CD68, and IL18. The fourth patient developed demyelinating lesions in the setting of a relapse 4 years after NMDAR-encephalitis. These lesions exhibited the hallmarks of classic multiple sclerosis with radially expanding lesions and remyelinated shadow plaques without complement or immunoglobulin deposition, compatible with a pattern I demyelination. INTERPRETATION: The topographic distribution of inflammation in patients with NMDAR-encephalitis reflects the clinical symptoms of movement disorders, abnormal behavior, and memory dysfunction with inflammation dominantly observed in basal ganglia, amygdala, and hippocampus, and loss of NMDAR-immunoreactivity correlates with disease severity. Co-occurring pathologies influence the spatial distribution, composition, and intensity of inflammation, which may modify patients' clinical presentation and outcome. ANN NEUROL 2021;90:725-737.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encefalite Antirreceptor de N-Metil-D-Aspartato/patologia , Recidiva Local de Neoplasia/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Masculino , Doenças do Sistema Nervoso/patologia
2.
Brain ; 144(1): 144-161, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33578421

RESUMO

Traumatic spinal cord injury is a devastating insult followed by progressive cord atrophy and neurodegeneration. Dysregulated or non-resolving inflammatory processes can disturb neuronal homeostasis and drive neurodegeneration. Here, we provide an in-depth characterization of innate and adaptive inflammatory responses as well as oxidative tissue injury in human traumatic spinal cord injury lesions compared to non-traumatic control cords. In the lesion core, microglia were rapidly lost while intermediate (co-expressing pro- as well as anti-inflammatory molecules) blood-borne macrophages dominated. In contrast, in the surrounding rim, TMEM119+ microglia numbers were maintained through local proliferation and demonstrated a predominantly pro-inflammatory phenotype. Lymphocyte numbers were low and mainly consisted of CD8+ T cells. Only in a subpopulation of patients, CD138+/IgG+ plasma cells were detected, which could serve as candidate cellular sources for a developing humoral immunity. Oxidative neuronal cell body and axonal injury was visualized by intracellular accumulation of amyloid precursor protein (APP) and oxidized phospholipids (e06) and occurred early within the lesion core and declined over time. In contrast, within the surrounding rim, pronounced APP+/e06+ axon-dendritic injury of neurons was detected, which remained significantly elevated up to months/years, thus providing mechanistic evidence for ongoing neuronal damage long after initial trauma. Dynamic and sustained neurotoxicity after human spinal cord injury might be a substantial contributor to (i) an impaired response to rehabilitation; (ii) overall failure of recovery; or (iii) late loss of recovered function (neuro-worsening/degeneration).


Assuntos
Mielite/imunologia , Estresse Oxidativo/imunologia , Traumatismos da Medula Espinal/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/imunologia , Feminino , Humanos , Macrófagos/imunologia , Masculino , Microglia/imunologia , Pessoa de Meia-Idade , Mielite/etiologia , Mielite/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia
3.
Brain Pathol ; 33(1): e13098, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698271

RESUMO

The myelin-associated inhibitor Nogo-A (Reticulon 4, RTN4) restricts axonal outgrowth, plasticity, and neural circuitry formation in experimental models of spinal cord injury (SCI) and is targeted in clinical interventions starting treatment within 4 weeks post-SCI. Specifically, Nogo-A expressed by oligodendroglia restricts compensatory neurite sprouting. To interrogate the hypothesis of an inducible, lesion reactive Nogo-A expression over time, we analyzed the spatiotemporal Nogo-A expression at the spinal lesion core (region of tissue necrosis and axonal damage/pruning) and perilesional rim (region of plasticity formation). Spinal cord specimens of SCI subjects (n = 22) were compared to neuropathologically unaltered controls (n = 9). Nogo-A expression was investigated ranging from acute (0-3 days), early subacute (4-21 days), late subacute (22-90 days) to early chronic-chronic (91 days to 1.5 years after SCI) stages after SCI. Nogo-A expression in controls is confined to motoneurons in the anterior horn and to oligodendrocytes in gray and white matter. After SCI, the number of Nogo-A+ and TPPP/p25+ oligodendrocytes (i) inclined at the organizing perilesional rim specifically, (ii) increased further over time, and (iii) peaked at chronic stages after SCI. By contrast, at the lesion core, the number of Nogo-A+ and TPPP/p25+ oligodendrocytes did not increase. Increasing numbers of Nogo-A+ oligodendrocytes coincided with oligodendrogenesis corroborated by Nogo-A coexpression of Ki67+ , TPPP/p25+ proliferating oligodendrocytes. Nogo-A oligodendrocyte expression emerges at perilesional (plasticity) regions over time and suggests an extended therapeutical window for anti-Nogo-A pathway targeting interventions beyond 4 weeks in patients after SCI.


Assuntos
Bainha de Mielina , Traumatismos da Medula Espinal , Humanos , Proteínas da Mielina/metabolismo , Proteínas da Mielina/uso terapêutico , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteínas Nogo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36070310

RESUMO

BACKGROUND AND OBJECTIVES: Paraneoplastic cerebellar degeneration (PCD) is characterized by a widespread loss of Purkinje cells (PCs) and may be associated with autoantibodies against intracellular antigens such as Yo or cell surface neuronal antigens such as the P/Q-type voltage-gated calcium channel (P/Q-VGCC). Although the intracellular location of the target antigen in anti-Yo-PCD supports a T cell-mediated pathology, the immune mechanisms in anti-P/Q-VGCC-PCD remain unclear. In this study, we compare neuropathologic characteristics of PCD with anti-P/Q-VGCC and anti-Yo autoantibodies in an archival autopsy cohort. METHODS: We performed neuropathology, immunohistochemistry, and multiplex immunofluorescence on formalin-fixed and paraffin-embedded brain tissue of 1 anti-P/Q-VGCC, 2 anti-Yo-PCD autopsy cases and controls. RESULTS: Anti-Yo-PCD revealed a diffuse and widespread PC loss together with microglial nodules with pSTAT1+ and CD8+granzymeB+ T cells and neuronal upregulation of major histocompatibility complex (MHC) Class I molecules. Some neurons showed a cytoplasmic immunoglobulin G (IgG) staining. In contrast, PC loss in anti-P/Q-VGCC-PCD was focal and predominantly affected the upper vermis, whereas caudal regions and lateral hemispheres were spared. Inflammation was characterized by scattered CD8+ T cells, single CD20+/CD79a+ B/plasma cells, and an IgG staining of the neuropil in the molecular layer of the cerebellar cortex and neuronal cytoplasms. No complement deposition or MHC-I upregulation was detected. Moreover, synaptophysin was reduced, and neuronal P/Q-VGCC was downregulated. In affected areas, axonal spheroids and the accumulation of amyloid precursor protein and glucose-regulated protein 78 in PCs indicate endoplasmatic reticulum stress and impairment of axonal transport. In both PCD types, calbindin expression was reduced or lost in the remaining PCs. DISCUSSION: Anti-Yo-PCD showed characteristic features of a T cell-mediated pathology, whereas this was not observed in 1 case of anti-P/Q-VGCC-PCD. Our findings support a pathogenic role of anti-P/Q-VGCC autoantibodies in causing neuronal dysfunction, probably due to altered synaptic transmission resulting in calcium dysregulation and subsequent PC death. Because disease progression may lead to irreversible PC loss, anti-P/Q-VGCC-PCD patients could benefit from early oncologic and immunologic therapies.


Assuntos
Degeneração Paraneoplásica Cerebelar , Anticorpos Antineoplásicos , Autoanticorpos , Linfócitos T CD8-Positivos , Canais de Cálcio Tipo Q , Humanos , Imunoglobulina G , Proteínas do Tecido Nervoso
5.
Front Immunol ; 12: 785247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095860

RESUMO

Background: IgG4 is associated with two emerging groups of rare diseases: 1) IgG4 autoimmune diseases (IgG4-AID) and 2) IgG4-related diseases (IgG4-RLD). Anti-neuronal IgG4-AID include MuSK myasthenia gravis, LGI1- and Caspr2-encephalitis and autoimmune nodo-/paranodopathies (CNTN1/Caspr1 or NF155 antibodies). IgG4-RLD is a multiorgan disease hallmarked by tissue-destructive fibrotic lesions with lymphocyte and IgG4 plasma cell infiltrates and increased serum IgG4 concentrations. It is unclear whether IgG4-AID and IgG4-RLD share relevant clinical and immunopathological features. Methods: We collected and analyzed clinical, serological, and histopathological data in 50 patients with anti-neuronal IgG4-AID and 19 patients with IgG4-RLD. Results: A significantly higher proportion of IgG4-RLD patients had serum IgG4 elevation when compared to IgG4-AID patients (52.63% vs. 16%, p = .004). Moreover, those IgG4-AID patients with elevated IgG4 did not meet the diagnostic criteria of IgG4-RLD, and their autoantibody titers did not correlate with their serum IgG4 concentrations. In addition, patients with IgG4-RLD were negative for anti-neuronal/neuromuscular autoantibodies and among these patients, men showed a significantly higher propensity for IgG4 elevation, when compared to women (p = .005). Last, a kidney biopsy from a patient with autoimmune paranodopathy due to CNTN1/Caspr1-complex IgG4 autoantibodies and concomitant nephrotic syndrome did not show fibrosis or IgG4+ plasma cells, which are diagnostic hallmarks of IgG4-RLD. Conclusion: Our observations suggest that anti-neuronal IgG4-AID and IgG4-RLD are most likely distinct disease entities.


Assuntos
Doença Relacionada a Imunoglobulina G4/imunologia , Doença Relacionada a Imunoglobulina G4/patologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Feminino , Humanos , Masculino , Neurônios/imunologia , Neurônios/patologia
6.
Mult Scler J Exp Transl Clin ; 5(2): 2055217319848463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205739

RESUMO

BACKGROUND: Demyelinating diseases of the central nervous system associated with autoantibodies against aquaporin-4 and myelin-oligodendrocyte-glycoprotein are mediated by different immunopathological mechanisms compared to multiple sclerosis. OBJECTIVE: The purpose of this study was to evaluate serum and cerebrospinal fluid cytokine/chemokine profiles in patients with autoantibodies against aquaporin-4 or autoantibodies against myelin-oligodendrocyte-glycoprotein-associated demyelination compared to multiple sclerosis and autoimmune encephalitis. METHODS: Serum and cerebrospinal fluid cytokine/chemokine levels were analysed using Procartaplex Multiplex Immunoassays. First, we analysed a panel of 32 cytokines/chemokines in a discovery group (nine aquaporin-4-antibody seropositive, nine myelin oligodendrocyte glycoprotein-antibody seropositive, eight encephalitis, 10 multiple sclerosis). Significantly dysregulated cytokines/chemokines were validated in a second cohort (11 aquaporin-4-antibody seropositive, 18 myelin oligodendrocyte glycoprotein-antibody seropositive, 18 encephalitis, 33 multiple sclerosis). RESULTS: We found 11 significantly altered cytokines/chemokines in cerebrospinal fluid and serum samples in the discovery group (a proliferation-inducing ligand, fractalkine=CX3CL1, growth-regulated oncogene-α, interleukin-1 receptor antagonist, interleukin-6, interleukin-8=CXCL8, interleukin-10, interleukin-21, interferon-É£-induced protein-10=CXCL10, monokine induced by interferon-É£=CXCL9, macrophage inflammatory protein-1ß=CCL4). Most of these cytokines/chemokines were up-regulated in autoantibodies against aquaporin-4 or autoantibodies against myelin-oligodendrocyte-glycoprotein positive patients compared to multiple sclerosis. We confirmed these results for cerebrospinal fluid interleukin-6 and serum interleukin-8, growth-regulated oncogene-α, a proliferation-inducing ligand and macrophage inflammatory protein-1ß in the validation set. Receiver-operating characteristic analysis revealed increased levels of cerebrospinal fluid interleukin-6, serum interleukin-8 and growth-regulated oncogene-α in most patients with autoantibody-associated neurological diseases. CONCLUSION: This study suggests that distinctive cerebrospinal fluid and serum cytokine/chemokine profiles are associated with autoantibody-mediated demyelination, but not with multiple sclerosis.

7.
Front Neurol ; 9: 841, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364136

RESUMO

This review provides an overview on different antibody test methods that can be applied in cases of suspected paraneoplastic neurological syndromes (PNS) and anti-neuronal autoimmune encephalitis (AIE) in order to explain their diagnostic value, describe potential pitfalls and limitations, and discuss novel approaches aimed at discovering further autoantibodies. Onconeuronal antibodies are well-established biomarkers for PNS and may serve as specific tumor markers. The recommended procedure to detect onconeuronal antibodies is a combination of indirect immunohistochemistry on fixed rodent cerebellum and confirmation of the specificity by line assays. Simplification of this approach by only using line assays with recombinant proteins bears the risk to miss antibody-positive samples. Anti-neuronal surface antibodies are sensitive and specific biomarkers for AIE. Their identification requires the use of test methods that allow the recognition of conformation dependent epitopes. These commonly include cell-based assays and tissue based assays with unfixed rodent brain tissue. Tissue based assays can detect most of the currently known neuronal surface antibodies and thus enable broad screening of biological samples. A complementary testing on live neuronal cell cultures may confirm that the antibody recognizes a surface epitope. In patients with peripheral neuropathy, the screening may be expanded to teased nerve fibers to identify antibodies against the node of Ranvier. This method helps to identify a novel subgroup of peripheral autoimmune neuropathies, resulting in improved immunotherapy of these patients. Tissue based assays are useful to discover additional autoantibody targets that play a role in diverse autoimmune neurological syndromes. Antibody screening assays represent promising avenues of research to improve the diagnostic yield of current assays for antibody-associated autoimmune encephalitis.

8.
Sci Rep ; 7(1): 2668, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572629

RESUMO

Fluorescence colocalization microscopy is frequently used to assess potential links between distinct molecules; however, this method can lead to striking false-positive results and erroneous conclusions. Here we developed a novel approach with more sophisticated mathematical colocalization analyses together with visualization of physical proximity using fluorescence resonance energy transfer (FRET). To verify our results we used the proximity ligation assay (PLA). With these methods we could demonstrate that distinct neurodegeneration-related proteins either not or only rarely interact in human brain tissue.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Proteínas/química , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Ligação a DNA/química , Feminino , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , alfa-Sinucleína/química , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa