Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Exp Bot ; 73(8): 2369-2384, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35088853

RESUMO

Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific Ser/Thr protein phosphatases of the type 2C (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. This work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant, ap2c1 and mkp1, and the ap2c1 mkp1 double mutant displayed enhanced stress-induced activation of the MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants showed an autoimmune-like response, associated with increased levels of the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. This phenotype was reduced in the ap2c1 mkp1 mpk3 and ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MAPK misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MAPK activities, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
2.
Appl Microbiol Biotechnol ; 96(3): 587-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22983562

RESUMO

Nuclear magnetic resonance, mid and near infrared, and ultra violet (UV) spectra of wood contain information on its chemistry and composition. When solid wood samples are analysed, information on the molecular structure of the lignocellulose complex of wood e.g. crystallinity of polysaccharides and the orientation of the polymers in wood cell walls can also be gained. UV and infrared spectroscopy allow also for spatially resolved spectroscopy, and state-of-the-art mapping and imaging systems have been able to provide local information on wood chemistry and structure at the level of wood cells (with IR) or cell wall layers (with UV). During the last decades, these methods have also proven useful to follow alterations of the composition, chemistry and physics of the substrate wood after fungi had grown on it as well as changes of the interactions between the wood polymers within the lignocellulose complex caused by decay fungi. This review provides an overview on how molecular spectroscopic methods could contribute to understand these degradation processes and were able to characterise and localise fungal wood decay in its various stages starting from the incipient and early ones even if the major share of research focussed on advanced decay. Practical issues such as requirements in terms of sample preparation and sample form and present examples of optimised data analysis will also be addressed to be able to detect and characterise the generally highly variable microbial degradation processes within their highly variable substrate wood.


Assuntos
Fungos/metabolismo , Compostos Orgânicos/análise , Análise Espectral/métodos , Madeira/química , Madeira/metabolismo
3.
J Environ Qual ; 41(4): 990-1000, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751041

RESUMO

Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance of naphthalene with increasing HTT. The results demonstrate that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.


Assuntos
Carvão Vegetal/química , Incineração/métodos , Caules de Planta , Temperatura , Madeira , Varredura Diferencial de Calorimetria , Elementos Químicos , Picea/química , Caules de Planta/química , Hidrocarbonetos Policíclicos Aromáticos , Populus/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum/química , Madeira/química , Difração de Raios X
4.
Biomacromolecules ; 9(8): 2194-201, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18636773

RESUMO

The feasibility of Fourier transform infrared (FT-IR) microscopy to monitor in situ the enzymatic degradation of wood was investigated. Cross-sections of poplar wood were treated with cellulase Onozuka RS within a custom-built fluidic cell. Light-optical micrographs and FT-IR spectra were acquired in situ from normal and tension wood fibers. Light-optical micrographs showed almost complete removal of the gelatinous (G) layer in tension wood. No structural and spectral changes were observed in the lignified cell walls. The accessibility of cellulose within the lignified cell wall was found to be the main limiting factor, whereas the depletion of the enzyme due to lignin adsorption could be ruled out. The fast, selective hydrolysis of the crystalline cellulose in the G-layer, even at room temperature, might be explained by the gel-like structure and the highly porous surface. Young plantation grown hardwood trees with a high proportion of G-fibers thus represent an interesting resource for bioconversion to fermentable sugars in the process to bioethanol.


Assuntos
Biotecnologia/métodos , Celulase/química , Populus/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Biotecnologia/instrumentação , Celulose/química , Cristalização , Etanol/química , Fermentação , Hidrólise , Luz , Óptica e Fotônica , Porosidade , Temperatura , Madeira/análise
5.
Appl Spectrosc ; 62(8): 873-80, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18702860

RESUMO

Humic acids are part of the stable organic matter fraction in soils and composts. Due to their favorable properties for soils and plants, and their role in carbon sequestration, they are considered a quality criterion of composts. Time-consuming chemical extraction of humic acids and the inherent source of errors require alternative approaches for humic acids quantification. Different measurement techniques in the mid-infrared (MIR: KBr pellet technique) and near-infrared (NIR: fiber probe as well as an integrating sphere with a sample rotator) regions were applied. Partial least squares regression (PLSR) models based on infrared spectra were developed to determine humic acids contents in composts. As the wavenumber regions used (NIR: 6105-5380 cm(-1) and 4360-4220 cm(-1), MIR: 1745-1685 cm(-1) and 1610-1567 cm(-1)) represent different molecular vibrations, the importance of the methylene-group-derived vibrations for the NIR models is discussed. The correlation coefficients obtained for the KBr pellet technique, the NIR fiber probe technique, and the NIR integrating sphere (r = 0.94, 0.93, and 0.94) and the root mean square errors of cross-validation (RMSECV = 2.2% organic dry matter (ODM), 2.5% ODM, and 2.2% ODM) make the models appropriate for application in composting practice.


Assuntos
Substâncias Húmicas/análise , Solo/análise , Substâncias Húmicas/estatística & dados numéricos , Análise dos Mínimos Quadrados , Modelos Lineares , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/estatística & dados numéricos
6.
FEBS Lett ; 581(2): 320-4, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17217949

RESUMO

Despite catalyzing the same reaction (2 H2O2-->2 H2O+O2) heme-containing monofunctional catalases and bifunctional catalase-peroxidases (KatGs) do not share sequence or structural similarities raising the question of whether or not the reaction pathways are similar or different. The production of dioxygen from hydrogen peroxide by monofunctional catalases has been shown to be a two-step process involving the redox intermediate compound I which oxidizes H2O2 directly to O2. In order to investigate the origin of O2 released in KatG mediated H2O2 degradation we performed a gas chromatography-mass spectrometry investigation of the evolved O2 from a 50:50 mixture of H2(18)O2/H2(16)O2 solution containing KatGs from Mycobacterium tuberculosis and Synechocystis PCC 6803. The GC-MS analysis clearly demonstrated the formation of (18)O2 (m/e = 36) and (16)O2 (m/e = 32) but not (16)O(18)O (m/e = 34) in the pH range 5.6-8.5 implying that O2 is formed by two-electron oxidation without breaking the O-O bond. Also active site variants of Synechocystis KatG with very low catalase but normal or even enhanced peroxidase activity (D152S, H123E, W122F, Y249F and R439A) are shown to oxidize H2O2 by a non-scrambling mechanism. The results are discussed with respect to the catalatic mechanism of KatG.


Assuntos
Proteínas de Bactérias/química , Peróxido de Hidrogênio/química , Mycobacterium tuberculosis/enzimologia , Peroxidases/química , Synechocystis/enzimologia , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/química
7.
FEMS Microbiol Lett ; 271(2): 162-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17466029

RESUMO

Beech wood (Fagus sylvatica L.) veneers were cultivated with white and brown rot fungi for up to 10 weeks. Fungal wood modification was traced with Fourier transform near infrared (FT-NIR) and Fourier transform mid infrared (FT-MIR) methods. Partial least square regression (PLSR) models to predict the total lignin content before and after fungal decay in the range between 17.0% and 26.6% were developed for FT-MIR transmission spectra as well as for FT-NIR reflectance spectra. Weight loss of the decayed samples between 0% and 38.2% could be estimated from the wood surface using individual PLSR models for white rot and brown rot fungi, and from a model including samples subjected to both degradation types.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Fagus/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Madeira/metabolismo , Fagus/microbiologia , Lignina/metabolismo , Análise Multivariada , Fatores de Tempo , Madeira/microbiologia
8.
J Photochem Photobiol B ; 69(2): 97-105, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12633982

RESUMO

The yellowing and IR-changes of spruce wood as a result of UV-irradiation were studied using two different types of xenon lamps (lambda>300 nm; I(o)=50 mW cm(-2) and lambda>280 nm; I(o)=17.5 mW cm(-2)). Changes in the IR spectra as well as the yellowing of the irradiated wood surfaces show the influence of UV light on the wood modules. The UV-irradiation (72 h; lambda>300 nm; I(o)=50 mW cm(-2)) decreased the lignin content on the surface by up to 20% of the original values. The colour difference of yellowing (deltaE) exhibited a systematic trend to higher values with increasing irradiation time. Our results show that the photoyellowing (UV-Vis detection) correlates very well with lignin degradation (IR detection). This result is in agreement with the quinone formation as the chromophoric reaction product of lignin decay. The degradation, yellowing, and oxidation kinetics differed only little using different light sources. The absorbed light intensity, which depends on wavelength, the intensity distribution of the light source and the absorption spectrum of lignin, influenced the degradation rate. Under the current experimental conditions, the absorption spectrum of lignin was the most important factor. Therefore, irradiation with lambda>280 nm is useful for rapidly monitoring the UV-degradation of wood


Assuntos
Lignina/química , Lignina/efeitos da radiação , Picea/química , Picea/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Raios Ultravioleta , Madeira , Cor , Relação Dose-Resposta à Radiação , Raios Infravermelhos , Lignina/análise , Caules de Planta/química , Caules de Planta/efeitos da radiação
9.
Enzyme Microb Technol ; 47(6): 257-267, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21052475

RESUMO

Spruce wood that had been degraded by brown-rot fungi (Gloeophyllum trabeum or Poria placenta) exhibiting mass losses up to 16% was investigated by transmission Fourier transform infrared (FT-IR) imaging microscopy. Here the first work on the application of FT-IR imaging microscopy and multivariate image analysis of fungal degraded wood is presented and the first report on the spatial distribution of polysaccharide degradation during incipient brown-rot of wood. Brown-rot starts to become significant in the outer cell wall regions (middle lamellae, primary cell walls, and the outer layer of the secondary cell wall S1). This pattern was detected even in a sample with non-detectable mass loss. Most significant during incipient decay was the cleavage of glycosidic bonds, i.e. depolymerisation of wood polysaccharides and the degradation of pectic substances. Accordingly, intramolecular hydrogen bonding within cellulose was reduced, while the presence of phenolic groups increased.

10.
Anal Chem ; 80(4): 1272-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18197697

RESUMO

The weight percentage gain (WPG) and the acetyl group content of wood due to acetylation with acetic anhydride have been analyzed by means of Fourier transform infrared spectroscopy (FTIR) and near-infrared spectroscopy (NIR). Band height ratios (BHR) (1240/1030 (1230/1030) and 1745/1030 (1740/1030)) of the bands at 1745 (1740), 1240 (1230), and 1030 cm-1 were calculated from FTIR-KBr and FTIR-ATR (attenuated total reflection) spectra. The good linear correlation with a coefficient of determination of about 0.94 over a range from 0 to 27% WPG existing between BHRs and WPG and acetyl group content, respectively, requires only a few samples to calibrate FTIR. Partial least-squares regression models based on second derivatives of the NIR spectra in the wavenumber range from 6080 to 5760 cm-1 resulted in a R2 value of 0.99, number of PLS components (rank) between 3 and 5, root-mean-square error of cross-validation between 0.6 and 0.79%, and a residual prediction deviation up to 10. Although a wide range of input parameters (i.e., various wood species and different procedures of acetylation) was used, highly satisfactory results were obtained. Both FTIR and NIR spectroscopic means fulfill the need for determining the WPG and the acetyl content of acetylated wood. By reason of its additional potential for on-line process control, the NIR method may even outperform the FTIR method.


Assuntos
Anidridos Acéticos/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Madeira/análise , Acetilação , Humanos , Análise dos Mínimos Quadrados , Peso Molecular , Análise de Regressão , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Madeira/química
11.
Biotechnol J ; 3(9-10): 1245-55, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18702088

RESUMO

The enzyme TEM1-beta-lactamase has been used as a model to study the impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies (IBs). The protein has been heterologously expressed in Escherichia coli in fed-batch cultivations at different temperatures (30, 37, and 40 degrees C) as well as induction regimes that guaranteed distinct product formation rates and ratios of soluble to aggregated protein. Additionally, shake flask cultivations at 20, 30, and 37 degrees C were performed. IBs were sampled during the whole bioprocess and structural analysis was performed by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. This work clearly demonstrates that the tested production regimes and rates had no impact on the IB structure, which was characterized by decreased alpha-helical and increased and modified beta-sheet contents compared to the native protein. Moreover, aggregates formed during refolding of IBs by solubilization and simple dilution showed very similar FT-IR spectra suggesting (i) the existence of only one critical folding step from which either aggregation (IB formation) or native folding branches off, and (ii) underlining the important role of the specific amino acid sequence in aggregation. The findings are discussed with respect to the known structure of TEM1-beta-lactamase and the reported kinetics of its (un)folding as well as contradictory data on the effect of cultivation regimes on IB structure(s) of other proteins.


Assuntos
Proteínas de Escherichia coli/química , Corpos de Inclusão/enzimologia , beta-Lactamases/química , Citosol/enzimologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Dobramento de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Lactamases/metabolismo
12.
Talanta ; 72(2): 791-9, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19071688

RESUMO

Fourier transform infrared (FTIR) spectroscopy has been proven to be an appropriate analytical method for the qualitative assessment of compost stability. This study focuses on quantitative determination of two time-consuming parameters: humic acid (HA) contents and respiration activity. Reactivity/stability and humification were quantified by respiration activities (oxygen uptake) and humic acid contents. These features are also reflected by a specific infrared spectroscopic pattern. Based on this relationship partial least squares regression (PLS-R) models for the prediction of respiration activities and humic acid contents were calculated. Characteristic wavenumber regions that are assigned to the biological/chemical parameter were selected for multivariate data analysis. The coefficient of determination (R(2)) obtained for the humic acid prediction model from infrared spectra was 87% with a root mean square error of cross-validation (RMSECV) of 2.6% organic dry matter (ODM). The prediction model for respiration activity resulted in a R(2) of 94% and a RMSECV for oxygen uptake of 2.9mgg(-1) dry matter (DM).

13.
Plant Cell ; 19(7): 2213-24, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17630279

RESUMO

Wound signaling pathways in plants are mediated by mitogen-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis thaliana, the transmission of wound signals by MAPKs has been the subject of detailed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-responsive MAPKs MPK4 and MPK6. Mutant ap2c1 plants produce significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels display lower wound activation of MAPKs, reduced ethylene production, and compromised innate immunity against the necrotrophic pathogen Botrytis cinerea. Our results demonstrate a key role for the AP2C1 phosphatase in regulating stress hormone levels, defense responses, and MAPK activities in Arabidopsis and provide evidence that the activity of AP2C1 might control the plant's response to B. cinerea.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Oxilipinas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Biomarcadores , Botrytis , Regulação para Baixo/genética , Ativação Enzimática , Imunidade Inata , Doenças das Plantas/microbiologia , Ligação Proteica , Protoplastos/enzimologia , Saccharomyces cerevisiae/metabolismo
14.
Plant Physiol ; 140(4): 1246-54, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16489138

RESUMO

Confocal Raman microscopy was used to illustrate changes of molecular composition in secondary plant cell wall tissues of poplar (Populus nigra x Populus deltoids) wood. Two-dimensional spectral maps were acquired and chemical images calculated by integrating the intensity of characteristic spectral bands. This enabled direct visualization of the spatial variation of the lignin content without any chemical treatment or staining of the cell wall. A small (0.5 microm) lignified border toward the lumen was observed in the gelatinous layer of poplar tension wood. The variable orientation of the cellulose was also characterized, leading to visualization of the S1 layer with dimensions smaller than 0.5 mum. Scanning Raman microscopy was thus shown to be a powerful, nondestructive tool for imaging changes in molecular cell wall organization with high spatial resolution.


Assuntos
Parede Celular/ultraestrutura , Microscopia Confocal/métodos , Populus/citologia , Análise Espectral Raman/métodos , Parede Celular/química , Lignina/análise , Populus/química , Populus/crescimento & desenvolvimento
15.
Biomacromolecules ; 7(7): 2077-81, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16827572

RESUMO

Raman spectra were acquired in situ during tensile straining of mechanically isolated fibers of spruce latewood. Stress-strain curves were evaluated along with band positions and intensities to monitor molecular changes due to deformation. Strong correlations (r = 0.99) were found between the shift of the band at 1097 cm(-1) corresponding to the stretching of the cellulose ring structure and the applied stress and strain. High overall shifts (-6.5 cm(-1)) and shift rates (-6.1 cm(-1)/GPa) were observed. After the fiber failed, the band was found on its original position again, proving the elastic nature of the deformation. Additionally, a decrease in the band height ratio of the 1127 and 1097 cm(-1) bands was observed to go hand in hand with the straining of the fiber. This is assumed to reflect a widening of the torsion angle of the glycosidic C-O-C bonding. Thus, the 1097 cm(-1) band shift and the band height ratio enable one to follow the stretching of the cellulose at a molecular level, while the lignin bands are shown to be unaffected. Observed changes in the OH region are shown and interpreted as a weakening of the hydrogen-bonding network during straining. Future experiments on different native wood fibers with variable chemical composition and cellulose orientation and on chemically and enzymatically modified fibers will help to deepen the micromechanical understanding of plant cell walls and the associated macromolecules.


Assuntos
Picea/química , Árvores/química , Madeira , Análise Espectral Raman , Resistência à Tração
16.
Biochem Biophys Res Commun ; 337(3): 944-54, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16214107

RESUMO

Nitric oxide-derived oxidants (e.g., peroxynitrite) are believed to participate in antimicrobial activities as part of normal host defenses but also in oxidative tissue injury in inflammatory disorders. A similar role is ascribed to the heme enzyme myeloperoxidase (MPO), the most abundant protein of polymorphonuclear leukocytes, which are the terminal phagocytosing effector cells of the innate immune system. Concomitant production of peroxynitrite and release of millimolar MPO are characteristic events during phagocytosis. In order to understand the mode of interaction between MPO and peroxynitrite, we have performed a comprehensive stopped-flow investigation of the reaction between all physiological relevant redox intermediates of MPO and peroxynitrite. Both iron(III) MPO and iron(II) MPO are rapidly converted to compound II by peroxynitrite in monophasic reactions with calculated rate constants of (6.8+/-0.1) x 10(6) M(-1)s(-1) and (1.3+/-0.2) x 10(6) M(-1)s(-1), respectively (pH 7.0 and 25 degrees C). Besides these one- and two-electron reduction reactions of peroxynitrite, which produce nitrogen dioxide and nitrite, a one-electron oxidation to the oxoperoxonitrogen radical must occur in the fast monophasic transition of compound I to compound II mediated by peroxynitrite at pH 7.0 [(7.6+/-0.1) x 10(6) M(-1)s(-1)]. In addition, peroxynitrite induced a steady-state transition from compound III to compound II with a rate of (1.0+/-0.3) x 10(4) M(-1)s(-1). Thus, the interconversion among the various oxidation states of MPO that is prompted by peroxynitrite is remarkable. Reaction mechanisms are proposed and the physiological relevance is discussed.


Assuntos
Análise de Injeção de Fluxo/métodos , Ferro/química , Óxidos de Nitrogênio/química , Peroxidase/química , Ácido Peroxinitroso/química , Ferro/análise , Óxidos de Nitrogênio/análise , Oxirredução , Peroxidase/análise , Ácido Peroxinitroso/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa