Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ophthalmic Res ; 67(1): 292-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718759

RESUMO

INTRODUCTION: Cataract extraction is the most frequently performed ophthalmological procedure worldwide. Posterior capsule opacification remains the most common consequence after cataract surgery and can lead to deterioration of the visual performance with cloudy, blurred vision and halo, glare effects. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser capsulotomy is the gold standard treatment and a very effective, safe and fast procedure in removing the cloudy posterior capsule. Damaging the intraocular lens (IOL) during the treatment may occur due to wrong focus of the laser beam. These YAG-pits may lead to a permanent impairment of the visual quality. METHODS: In an experimental study, we intentionally induced YAG pits in hydrophilic and hydrophobic acrylic IOLs using a photodisruption laser with 2.6 mJ. This experimental study established a novel 3D imaging method using correlative X-ray and scanning electron microscopy (SEM) to characterize these damages. By integrating the information obtained from both X-ray microscopy and SEM, a comprehensive picture of the materials structure and performance could be established. RESULTS: It could be revealed that although the exact same energies were used to all samples, the observed defects in the tested lenses showed severe differences in shape and depth. While YAG pits in hydrophilic samples range from 100 to 180 µm depth with a round shape tip, very sharp tipped defects up to 250 µm in depth were found in hydrophobic samples. In all samples, particles/fragments of the IOL material were found on the surface that were blasted out as a result of the laser shelling. CONCLUSION: Defects in hydrophilic and hydrophobic acrylic materials differ. Material particles can detach from the IOL and were found on the surface of the samples. The results of the laboratory study illustrate the importance of a precise and careful approach to Nd:YAG capsulotomy in order to avoid permanent damage to the IOL. The use of an appropriate contact glass and posterior offset setting to increase safety should be carried out routinely.


Assuntos
Lasers de Estado Sólido , Lentes Intraoculares , Lasers de Estado Sólido/uso terapêutico , Imageamento Tridimensional , Microscopia Eletrônica de Varredura/métodos , Humanos
2.
Nano Lett ; 21(19): 8135-8142, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34529916

RESUMO

Iron and its alloys have made modern civilization possible, with metallic meteorites providing one of the human's earliest sources of usable iron as well as providing a window into our solar system's billion-year history. Here highest-resolution tools reveal the existence of a previously hidden FeNi nanophase within the extremely slowly cooled metallic meteorite NWA 6259. This new nanophase exists alongside Ni-poor and Ni-rich nanoprecipitates within a matrix of tetrataenite, the uniaxial, chemically ordered form of FeNi. The ferromagnetic nature of the nanoprecipitates combined with the antiferromagnetic character of the FeNi nanophases gives rise to a complex magnetic state that evolves dramatically with temperature. These observations extend and possibly alter our understanding of celestial metallurgy, provide new knowledge concerning the archetypal Fe-Ni phase diagram and supply new information for the development of new types of sustainable, technologically critical high-energy magnets.


Assuntos
Meteoroides , Ligas , Humanos , Ferro , Imãs , Transição de Fase
3.
Sci Rep ; 14(1): 1660, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238544

RESUMO

The patch-clamp technique has revolutionized neurophysiology by allowing to study single neuronal excitability, synaptic connectivity, morphology, and the transcriptomic profile. However, the throughput in recordings is limited because of the manual replacement of patch-pipettes after each attempt which are often also unsuccessful. This has been overcome by automated cleaning the tips in detergent solutions, allowing to reuse the pipette for further recordings. Here, we developed a novel method of automated cleaning by sonicating the tips within the bath solution wherein the cells are placed, reducing the risk of contaminating the bath solution or internal solution of the recording pipette by any detergent and avoiding the necessity of a separate chamber for cleaning. We showed that the patch-pipettes can be used consecutively at least ten times and that the cleaning process does not negatively impact neither the brain slices nor other patched neurons. This method, combined with automated patch-clamp, highly improves the throughput for single and especially multiple recordings.


Assuntos
Detergentes , Ultrassom , Neurônios/fisiologia , Neurofisiologia , Técnicas de Patch-Clamp
4.
Microsc Microanal ; 19(4): 996-1006, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23742898

RESUMO

Electron backscatter diffraction (EBSD) and electron probe microanalysis (EPMA) measurements are combined to characterize an industrial produced dual-phase steel containing some bainite fraction. High-resolution carbon mappings acquired on a field emission electron microprobe are utilized to validate and improve the identification of the constituents (ferrite, martensite, and bainite) performed by EBSD using the image quality and kernel average misorientation. The combination eliminates the ambiguity between the identification of bainite and transformation-induced dislocation zones, encountered if only the kernel average misorientation is considered. The detection of carbon in high misorientation regions confirms the presence of bainite. These results are corroborated by secondary electron images after nital etching. Limitations of this combined method due to differences between the spatial resolution of EBSD and EPMA are assessed. Moreover, a quantification procedure adapted to carbon analysis is presented and used to measure the carbon concentration in martensite and bainite on a submicrometer scale. From measurements on reference materials, this method gives an accuracy of 0.02 wt% C and a precision better than 0.05 wt% C despite unavoidable effects of hydrocarbon contamination.

5.
Sci Rep ; 13(1): 9345, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291122

RESUMO

In this study, we present a method for directly coating monoliths with a CeO2/CuO catalyst using the urea-nitrate combustion method. The catalyst was characterized by means of XRD, SEM/EDX, and EPR measurements. Experimental results are described, when this catalyst was used for the preferential oxidation of CO. The catalytic activity for the CO-PrOx-reaction was measured by recording CO conversion as a function of the reaction temperature in a hydrogen-rich gas mixture in the presence and absence of water vapor. In a long-term test of over 310 h, the catalyst's long-term stability was demonstrated. Direct coating is shown to be a promising approach by which a larger amount of catalyst can be deposited onto the monolith in a single step than would be possible with washcoats.


Assuntos
Cério , Cobre , Oxirredução , Catálise
6.
Nat Commun ; 13(1): 3478, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710547

RESUMO

Carbonated serpentinites (listvenites) in the Samail Ophiolite, Oman, record mineralization of 1-2 Gt of CO2, but the mechanisms providing permeability for continued reactive fluid flow are unclear. Based on samples of the Oman Drilling Project, here we show that listvenites with a penetrative foliation have abundant microstructures indicating that the carbonation reaction occurred during deformation. Folded magnesite veins mark the onset of carbonation, followed by deformation during carbonate growth. Undeformed magnesite and quartz overgrowths indicate that deformation stopped before the reaction was completed. We propose deformation by dilatant granular flow and dissolution-precipitation assisted the reaction, while deformation in turn was localized in the weak reacting mass. Lithostatic pore pressures promoted this process, creating dilatant porosity for CO2 transport and solid volume increase. This feedback mechanism may be common in serpentinite-bearing fault zones and the mantle wedge overlying subduction zones, allowing massive carbonation of mantle rocks.

7.
Materials (Basel) ; 10(1)2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28772416

RESUMO

Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa