Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 33(8): 8771-8781, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017817

RESUMO

The alkaloid narciclasine has been characterized extensively as an anticancer compound. Accumulating evidence suggests that narciclasine has anti-inflammatory potential; however, the underlying mechanism remains poorly understood. We hypothesized that narciclasine affects the activation of endothelial cells (ECs), a hallmark of inflammatory processes, which is a prerequisite for leukocyte-EC interaction. Thus, we aimed to investigate narciclasine's action on this process in vivo and to analyze the underlying mechanisms in vitro. In a murine peritonitis model, narciclasine reduced leukocyte infiltration, proinflammatory cytokine expression, and inflammation-associated abdominal pain. Moreover, narciclasine decreased rolling and blocked adhesion and transmigration of leukocytes in vivo. In cultured ECs, narciclasine inhibited the expression of cell adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin and blocked crucial steps of the NF-κB activation cascade: NF-κB promotor activity, p65 nuclear translocation, inhibitor of κB α (IκBα) phosphorylation and degradation, and IκBα kinase ß and TGF-ß-activated kinase 1 phosphorylation. Interestingly, these effects were based on the narciclasine-triggered loss of TNF receptor 1 (TNFR1). Our study highlights narciclasine as an interesting anti-inflammatory compound that effectively inhibits the interaction of leukocytes with ECs by blocking endothelial activation processes. Most importantly, we showed that the observed inhibitory action of narciclasine on TNF-triggered signaling pathways is based on the loss of TNFR1.-Stark, A., Schwenk, R., Wack, G., Zuchtriegel, G., Hatemler, M. G., Bräutigam, J., Schmidtko, A., Reichel, C. A., Bischoff, I., Fürst, R. Narciclasine exerts anti-inflammatory actions by blocking leukocyte-endothelial cell interactions and down-regulation of the endothelial TNF receptor 1.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Anti-Inflamatórios/farmacologia , Adesão Celular , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fenantridinas/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Movimento Celular , Células Cultivadas , Regulação para Baixo , Selectina E/genética , Selectina E/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Células THP-1 , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
2.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31693786

RESUMO

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Assuntos
Produtos Biológicos/química , Vias Biossintéticas/genética , Metabolômica/métodos , Humanos
3.
PLoS One ; 13(9): e0203053, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30204757

RESUMO

The vacuolar-type H+-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by ß1-integrins expressed on tumor cells, as blocking of the integrin ß1 subunit reversed this process. Tumor cells preferentially adhered to the ß1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.


Assuntos
Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Macrolídeos/farmacologia , Neoplasias/tratamento farmacológico , Tiazóis/farmacologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Catepsina B/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina beta1/metabolismo , Neoplasias/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Oncotarget ; 8(44): 77622-77633, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100413

RESUMO

Microtubule-targeting agents (MTAs) are the most widely used chemotherapeutic drugs. Pretubulysin (PT), a biosynthetic precursor of the myxobacterial tubulysins, was recently identified as a novel MTA. Besides its strong anti-tumoral activities, PT attenuates tumor angiogenesis, exerts anti-vascular actions on tumor vessels and decreases cancer metastasis formation in vivo. The aim of the present study was to analyze the impact of PT on the interaction of endothelial and tumor cells in vitro to gain insights into the mechanism underlying its anti-metastatic effect. The influence of PT on tumor cell adhesion and transmigration onto/through the endothelium as well as its influence on cell adhesion molecules and the chemokine system CXCL12/CXCR4 was investigated. Treatment of human endothelial cells with PT increased the adhesion of breast cancer cells to the endothelial monolayer, whereas their transmigration through the endothelium was strongly reduced. Interestingly, the PT-induced upregulation of ICAM-1, VCAM-1 and CXCL12 were dispensable for the PT-evoked tumor cell adhesion. Tumor cells preferred to adhere to collagen exposed within PT-triggered endothelial gaps via ß1-integrins on the tumor cell surface. Taken together, our study provides, at least in part, an explanation for the anti-metastatic potential of PT.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa