Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4641, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944784

RESUMO

Volcano-seismic signals can help for volcanic hazard estimation and eruption forecasting. However, the underlying mechanism for their low frequency components is still a matter of debate. Here, we show signatures of dynamic strain records from Distributed Acoustic Sensing in the low frequencies of volcanic signals at Vulcano Island, Italy. Signs of unrest have been observed since September 2021, with CO2 degassing and occurrence of long period and very long period events. We interrogated a fiber-optic telecommunication cable on-shore and off-shore linking Vulcano Island to Sicily. We explore various approaches to automatically detect seismo-volcanic events both adapting conventional algorithms and using machine learning techniques. During one month of acquisition, we found 1488 events with a great variety of waveforms composed of two main frequency bands (from 0.1 to 0.2 Hz and from 3 to 5 Hz) with various relative amplitudes. On the basis of spectral signature and family classification, we propose a model in which gas accumulates in the hydrothermal system and is released through a series of resonating fractures until the surface. Our findings demonstrate that fiber optic telecom cables in association with cutting-edge machine learning algorithms contribute to a better understanding and monitoring of volcanic hydrothermal systems.

2.
Sci Rep ; 12(1): 16954, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261590

RESUMO

Infrasound is increasing applied as a tool to investigate magma dynamics at active volcanoes, especially at open-vent volcanoes, such as Mt. Etna (Italy), which are prodigious sources of infrasound. Harmonic infrasound signals have been used to constrain crater dimensions and track the movement of magma within the shallow plumbing system. This study interprets the remarkable systematic change in monotonic infrasound signals preceding a lava fountaining episode at Mt. Etna on 20 February 2021. We model the changing tones (0.7 to 3 Hz fundamental frequency) as a rise in the magma column from 172 ± 25 m below the crater rim to 78 ± 8 m over the course of 24 h. The infrasonic gliding disappears approximately 4 h before the onset of lava fountaining as the magma column approaches the flare of the crater and acoustic resonance is no longer supported. The featured 20 February event was just one of 52 lava fountain episodes that occurred at Mt. Etna over the course of 9 months in 2021 and was the only lava fountain episode where dramatic gliding was observed as a subsequent partial collapse of the crater prevented future resonance. The results presented here demonstrate that analysis of infrasonic gliding can be used to track the position of the magma free surface and hence may provide information on the processes taking place within the plumbing system before eruptive activity.

3.
Sci Rep ; 9(1): 16417, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712606

RESUMO

Deriving eruption source parameters from geophysical data is critical for volcano hazard mitigation, yet remains a challenging task in most volcanoes worldwide. In this work, we explored the temporal relationship between geophysical signals and eruptive parameters measured during six explosive episodes from the New South-East Crater of Mt. Etna (Italy). The quadratic reduced seismic velocity and pressure were calculated to track the temporal variation of volcanic elastic radiation, and the lava fountain height was estimated by thermal camera image processing. The temporal relationships between these geophysical and eruptive time series were studied. In particular, the first considered lava fountain exhibited a "clockwise hysteresis" pattern: higher seismic amplitude with respect to the fountain height during the waxing phase as compared to the waning phase. We also calculated the regression parameters for both linear and power laws, linking seismo-acoustic and eruptive time series. For the linear regressions, we found fairly constant values of the scaling factors in five out of six eruptive episodes, which can be considered as a promising step to derive eruption source parameters from geophysical data in real-time. Regarding power law regressions, a clear relationship was observed between the exponents determined for the power law linking quadratic reduced velocity and lava fountain height, and the time interval duration from the previous eruption. These results suggest that the condition of the uppermost part of the plumbing system (e.g. viscosity of residing magma and conduit conditions) play a key role in the seismic energy generation during the eruptions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa