Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Langmuir ; 32(26): 6766-74, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27283467

RESUMO

Recent advances in nanotechnology bring to the forefront a new class of extrinsic constraints for remodeling lipid bilayers. In this next-generation technology, membranes are supported over nanoporous substrates. The nanometer-sized pores in the substrate are too small for bilayers to follow the substrate topology; consequently, the bilayers hang over the pores. Experiments demonstrate that nanoporous substrates remodel lipid bilayers differently from continuous substrates. The underlying molecular mechanisms, however, remain largely undetermined. Here we use molecular dynamics (MD) simulations to probe the effects of silica-type hydroxylation and charge densities on adsorbed palmitoyl-oleoylphosphatidylcholine (POPC) bilayers. We find that a 50% porous substrate decorated with a surface density of 4.6 hydroxyls/nm(2) adsorbs a POPC bilayer at a distance of 4.5 Å, a result consistent with neutron reflectivity experiments conducted on topologically similar silica constructs under highly acidic conditions. Although such an adsorption distance suggests that the interaction between the bilayer and the substrate will be buffered by water molecules, we find that the substrate does interact directly with the bilayer. The substrate modifies several properties of the bilayer-it dampens transverse lipid fluctuations, reduces lipid diffusion rates, and modifies transverse charge densities significantly. Additionally, it affects lipid properties differently in the two leaflets. Compared to substrates functionalized with sparser surface hydroxylation densities, this substrate adheres to bilayers at smaller distances and also remodels POPC more extensively, suggesting a direct correspondence between substrate hydrophilicity and membrane properties. A partial deprotonation of surface hydroxyls, as expected of a silica substrate under mildly acidic conditions, however, produces an inverse effect: it increases the substrate-bilayer distance, which we attribute to the formation of an electric double layer over the negatively charged substrate, and restores, at least partially, leaflet asymmetry and headgroup orientations. Overall, this study highlights the intrinsic complexity of lipid-substrate interactions and suggests the prospect of making two surface attributes-dipole densities and charge densities-work antagonistically toward remodeling lipid bilayer properties.

2.
Proteins ; 83(10): 1800-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26214145

RESUMO

A signature feature of collagen is its axial periodicity visible in TEM as alternating dark and light bands. In mature, type I collagen, this repeating unit, D, is 67 nm long. This periodicity reflects an underlying packing of constituent triple-helix polypeptide monomers wherein the dark bands represent gaps between axially adjacent monomers. This organization is visible distinctly in the microfibrillar model of collagen obtained from fiber diffraction. However, to date, no atomistic simulations of this diffraction model under zero-stress conditions have reported a preservation of this structural feature. Such a demonstration is important as it provides the baseline to infer response functions of physiological stimuli. In contrast, simulations predict a considerable shrinkage of the D-band (11-19%). Here we evaluate systemically the effect of several factors on D-band shrinkage. Using force fields employed in previous studies we find that irrespective of the temperature/pressure coupling algorithms, assumed salt concentration or hydration level, and whether or not the monomers are cross-linked, the D-band shrinks considerably. This shrinkage is associated with the bending and widening of individual monomers, but employing a force field whose backbone dihedral energy landscape matches more closely with our computed CCSD(T) values produces a small D-band shrinkage of < 3%. Since this force field also performs better against other experimental data, it appears that the large shrinkage observed in earlier simulations is a force-field artifact. The residual shrinkage could be due to the absence of certain atomic-level details, such as glycosylation sites, for which we do not yet have suitable data.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/ultraestrutura , Algoritmos , Artefatos , Colágeno Tipo I/metabolismo , Simulação de Dinâmica Molecular , Pressão , Cloreto de Sódio , Temperatura , Água
3.
Langmuir ; 28(5): 2842-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22239169

RESUMO

The physical properties of lipid bilayers can be remodeled by a variety of environmental factors. Here we investigate using molecular dynamics simulations the specific effects of nanoscopic substrates or external contact points on lipid membranes. We expose palmitoyl-oleoyl phosphatidylcholine bilayers unilaterally and separately to various model nanosized substrates differing in surface hydroxyl densities. We find that a surface hydroxyl density as low as 10% is sufficient to keep the bilayer juxtaposed to the substrate. The bilayer interacts with the substrate indirectly through multiple layers of water molecules; however, despite such buffered interaction, the bilayers exhibit certain properties different from unsupported bilayers. The substrates modify transverse lipid fluctuations, charge density profiles, and lipid diffusion rates, although differently in the two leaflets, which creates an asymmetry between bilayer leaflets. Other properties that include lipid cross-sectional areas, component volumes, and order parameters are minimally affected. The extent of asymmetry that we observe between bilayer leaflets is well beyond what has been reported for bilayers adsorbed on infinite solid supports. This is perhaps because the bilayers are much closer to our nanosized finite supports than to infinite solid supports, resulting in a stronger support-bilayer electrostatic coupling. The exposure of membranes to nanoscopic contact points, therefore, cannot be considered as a simple linear interpolation between unsupported membranes and membranes supported on infinite supports. In the biological context, this suggests that the exposure of membranes to nonintercalating proteins, such as those belonging to the cytoskeleton, should not always be considered as passive nonconsequential interactions.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Fosfatidilcolinas/química , Adsorção , Simulação de Dinâmica Molecular , Propriedades de Superfície
4.
Biochim Biophys Acta ; 1788(1): 136-48, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18848917

RESUMO

This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.


Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Membranas Artificiais , Simulação por Computador , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Modelos Moleculares , Modelos Teóricos , Termodinâmica
5.
Methods Mol Biol ; 398: 283-302, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18214387

RESUMO

Computer modeling can provide insights into the existence, structure, size, and thermodynamic stability of localized raft-like regions in membranes. However, the challenges in the construction and simulation of accurate models of heterogeneous membranes are great. The primary obstacle in modeling the lateral organization within a membrane is the relatively slow lateral diffusion rate for lipid molecules. Microsecond or longer time-scales are needed to fully model the formation and stability of a raft in a membra ne. Atomistic simulations currently are not able to reach this scale, but they do provide quantitative information on the intermolecular forces and correlations that are involved in lateral organization. In this chapter, the steps needed to carry out and analyze atomistic simulations of hydrated lipid bilayers having heterogeneous composition are outlined. It is then shown how the data from a molecular dynamics simulation can be used to construct a coarse-grained model for the heterogeneous bilayer that can predict the lateral organization and stability of rafts at up to millisecond time-scales.


Assuntos
Simulação por Computador , Lipídeos/análise , Lipídeos/química , Microdomínios da Membrana/química , Colesterol/química , Computadores , Modelos Biológicos , Fosfatidilcolinas/química , Fosfatidilinositóis/química , Software , Esfingomielinas/química
6.
Curr Opin Struct Biol ; 12(4): 495-502, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12163073

RESUMO

During the past several years, there have been a number of advances in the computational and theoretical modeling of lipid bilayer structural and dynamical properties. Molecular dynamics (MD) simulations have increased in length and time scales by about an order of magnitude. MD simulations continue to be applied to more complex systems, including mixed bilayers and bilayer self-assembly. A critical problem is bridging the gap between the still very small MD simulations and the time and length scales of experimental observations. Several new and promising techniques, which use atomic-level correlation and response functions from simulations as input to coarse-grained modeling, are being pursued.


Assuntos
Membrana Celular/química , Simulação por Computador , Lipídeos de Membrana/química , Modelos Químicos , Modelos Moleculares , Colesterol/química , Bicamadas Lipídicas/química , Lipídeos/química , Eletricidade Estática
7.
J Chem Theory Comput ; 6(3): 851-63, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26613312

RESUMO

In order to extend the time and distance scales of molecular dynamics simulations, it is essential to create accurate coarse-grained force fields, in which each particle contains several atoms. Coarse-grained force fields that utilize the Lennard-Jones potential form for pairwise nonbonded interactions have been shown to suffer from serious inaccuracy, notably with respect to describing the behavior of water. In this paper, we describe a coarse-grained force field for water, in which each particle contains four water molecules, based on the Morse potential form. By molecular dynamics simulations, we show that our force field closely replicates important water properties. We also describe a Morse potential force field for alkanes and a simulation method for alkanes in which individual particles may have variable size, providing flexibility in constructing complex molecules comprised partly or solely of alkane groups. We find that, in addition to being more accurate, the Morse potential also provides the ability to take larger time steps than the Lennard-Jones, because the short distance repulsion potential profile is less steep. We suggest that the Morse potential form should be considered as an alternative for the Lennard-Jones form for coarse-grained molecular dynamics simulations.

8.
J Chem Phys ; 124(1): 14708, 2006 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-16409052

RESUMO

Ceramide is the simplest lipid in the biologically important class of glycosphingolipids. Ceramide is an important signaling molecule and a major component of the strateum corneum layer in the skin. In order to begin to understand the biophysical properties of ceramide, we have carried out a molecular-dynamics simulation of a hydrated 16:0 ceramide lipid bilayer at 368 K (5 degrees above the main phase transition). In this paper we describe the simulation and present the resulting properties of the bilayer. We compare the properties of the simulated ceramide bilayer to an earlier simulation of 18:0 sphingomyelin, and we discuss the results as they relate to experimental data for ceramide and other sphingolipids. The most significant differences arise at the lipid/water interface, where the lack of a large ceramide polar group leads to a different electron density and a different electrostatic potential but, surprisingly, not a different overall "dipole potential," when ceramide is compared to sphingomyelin.


Assuntos
Ceramidas/química , Bicamadas Lipídicas/química , Simulação por Computador , Elétrons , Lipídeos/química , Modelos Químicos , Modelos Estatísticos , Conformação Molecular , Fosforilcolina/química , Esfingomielinas/química , Eletricidade Estática , Temperatura , Água/química
9.
Biophys J ; 83(4): 1842-53, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12324406

RESUMO

We present analysis of new configurational bias Monte Carlo and molecular dynamics simulation data for bilayers of dipalmitoyl phosphatidyl choline and cholesterol for dipalmitoyl phosphatidyl choline:cholesterol ratios of 24:1, 47:3, 11.5:1, 8:1, 7:1, 4:1, 3:1, 2:1, and 1:1, using long molecular dynamics runs and interspersed configurational bias Monte Carlo to ensure equilibration and enhance sampling. In all cases with cholesterol concentrations above 12.5% the area per molecule of the heterogeneous membrane varied linearly with cholesterol fraction. By extrapolation to pure cholesterol, we find the cross-sectional area of cholesterol in these mixtures is approximately 22.3 A(2). From the slope of the area/molecule relationship, we also find that the phospholipid in these mixtures is in a liquid ordered state with an average cross-sectional area per lipid of 50.7 A(2), slightly above the molecular area of a pure phospholipid gel. For lower concentrations of cholesterol, the molecular area rises above the straight line, indicating the "melting" of at least some of the phospholipid into a fluid state. Analysis of the lateral distribution of cholesterol molecules in the leaflets reveals peaks in radial distributions of cholesterols at multiples of approximately 5 A. These peaks grow in size as the simulation progresses, suggesting a tendency for small subunits of one lipid plus one cholesterol, hydrogen bonded together, to act as one composite particle, and perhaps to aggregate with other composites. Our results are consistent with experimentally observed effects of cholesterol, including the condensation effect of cholesterol in phospholipid monolayers and the tendency of cholesterol-rich domains to form in cholesterol-lipid bilayers. We are continuing to analyze this tendency on longer timescales and for larger bilayer patches.


Assuntos
Colesterol/farmacologia , Bicamadas Lipídicas/química , Fenômenos Biofísicos , Biofísica , Carbono/química , Colesterol/química , Simulação por Computador , Modelos Moleculares , Método de Monte Carlo , Fosfatidilcolinas/química , Fatores de Tempo
10.
Biophys J ; 85(6): 3624-35, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645055

RESUMO

We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50 degrees C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC.


Assuntos
Biofísica/métodos , Bicamadas Lipídicas/química , Esfingomielinas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Simulação por Computador , Elétrons , Hidrocarbonetos/química , Hidrogênio , Ligação de Hidrogênio , Cinética , Microdomínios da Membrana , Modelos Químicos , Modelos Moleculares , Modelos Teóricos , Pressão , Conformação Proteica , Software , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa